Physics-Infused Differential-Algebraic Reduced-Order Models for Multi-Disciplinary Systems

Carlos Vargas Venagas and Daning Huang

LLNL Machine Learning for Industry Forum, August 10-12, 2021

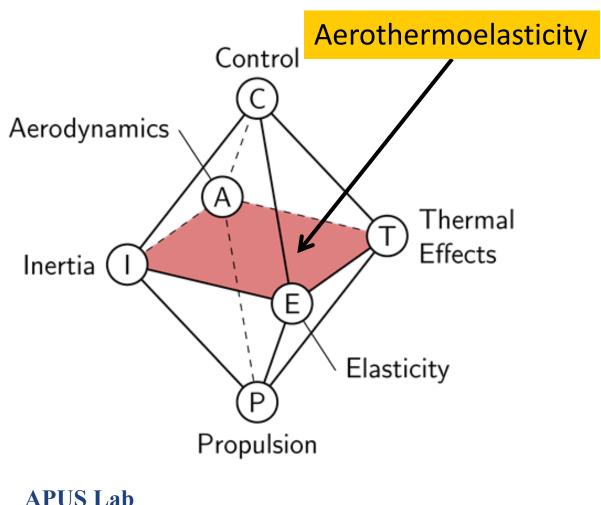
APUS Lab

Aerospace multi-Physical and Unconventional Systems

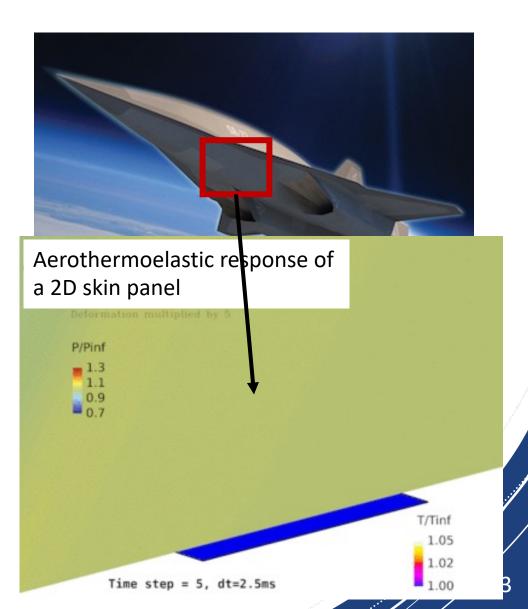
Background

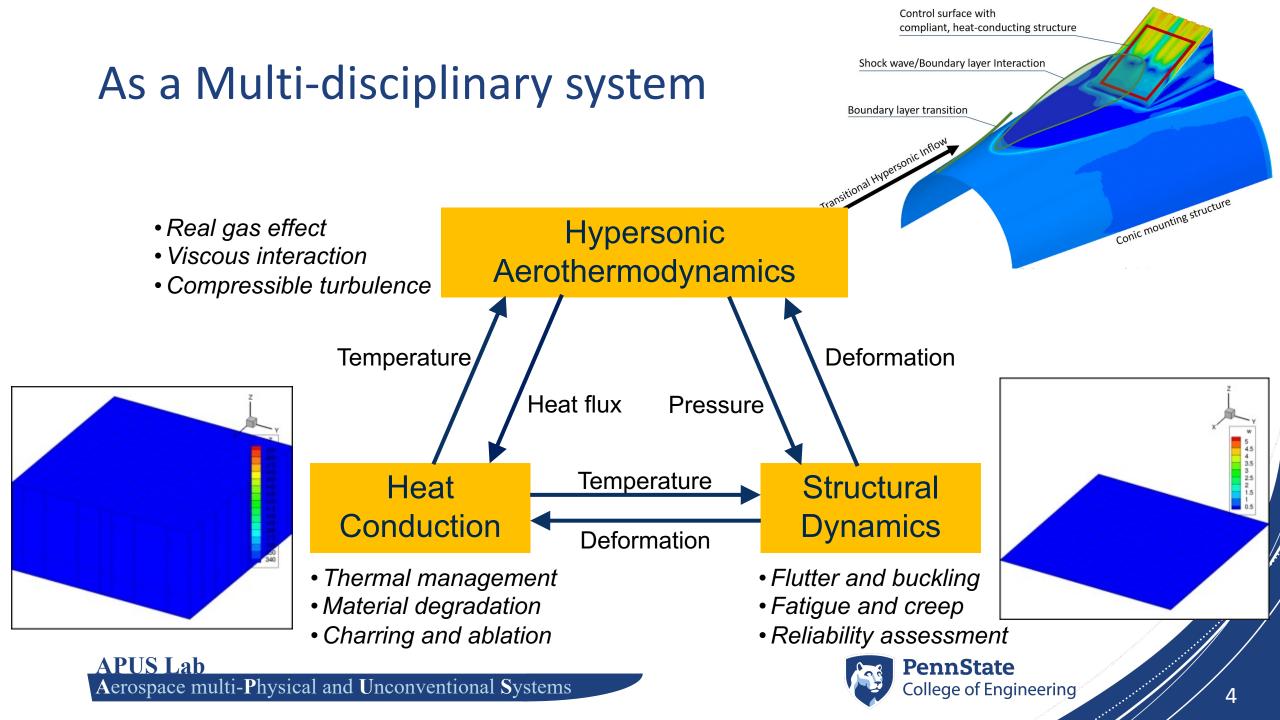
Hypersonic Aerothermoelasticity

Barrier to fly at Hypersonic speed

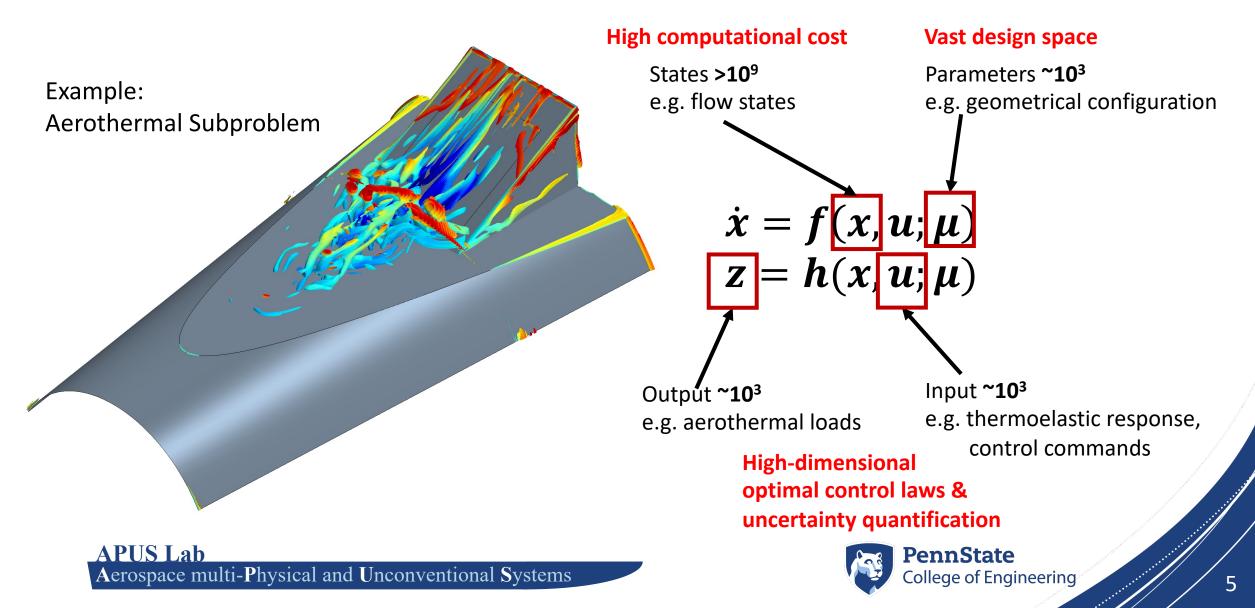


Aerospace multi-Physical and Unconventional Systems





Challenge to analyze, optimize, control such systems...



What are the options?

	al form of ve model	Generalizability to system parameters	Computational cost	More Physics Static/ Algebraic	Dynamic/ Differentia	-
Physics	(+ Data)	High	High	Model Cali Field-Inver	oration, sion w/ DL	Purely Physics-based
Ph	ysics	Mid	Mid	Projection-	based ROM	Data-Dependent
Physic	s + Data	High?	Low?	Physics-In	fused ROM	Physics-Data Infusion
D	ata	Mid	Low		Physics-Informed DL, Geometric DL	Physics-Informed
D	ata	Low	Low	Surrogate Modeling w/ Physics-based Corrections	System Identification Theory, Differential DL	Purely Data-driven
				N N	More Data	DL: Deep Learning ROM: Reduced-Order Model
	US Lab ospace multi-	Physical and Unconvent	ional S ystems		PennState College of Engineering	8

Formulation

Physics-Infused Reduced-Order Modeling

General Idea

Full-Order Model (FOM)

 $\dot{x} = F(x, u; \mu)$ $z = H(x, u; \mu)$

- **Boundary layer** Slender structure Examples Full-order Navier-Stokes Eqn. Elasticity Eqns. States Density, velocity, energy 3D displacement field Low-order Momentum integral Eqn. Euler-Bernoulli Eqn. State variables **BL** thicknesses 1D disp. field Aux. variables Shape factor, Skin friction Bending stiffness
- Low-Order Model First principle, much less states
 - $0 = f(y, \dot{y}, c, u; \mu) \leftarrow \text{Differential-algebraic Eqn.}$

 $c = g(y, u; \mu)$ $z = h(y, c, u; \mu)$ \leftarrow Auxiliary variables

Physics-Infused Reduced-Order Model

 $0 = f(y, \dot{y}, c, u; \mu)$ $A\dot{c} = \tilde{g}(y, u, c; \mu) \quad \leftarrow \text{Augmented form}$ $z = h(y, c, u; \mu)$

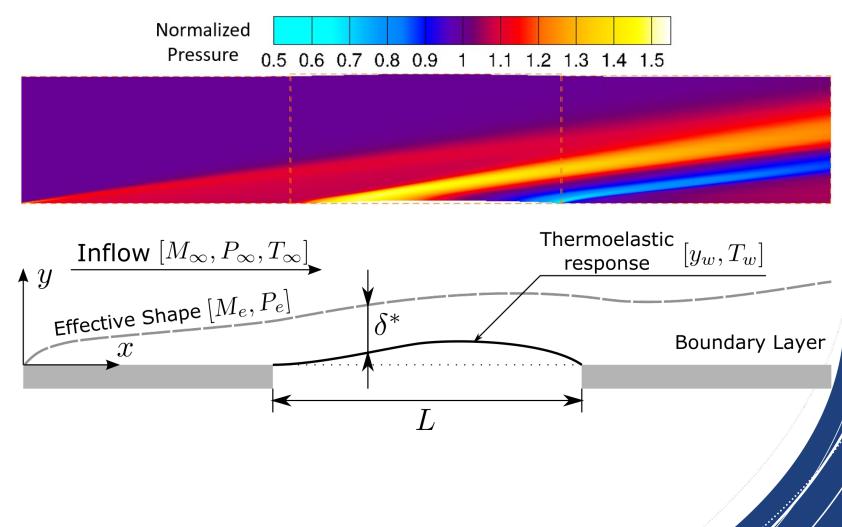
APUS Lab Aerospace multi-Physical and Unconventional Systems DAE-constrained optimization $A^*, \Theta^* = \frac{\operatorname{argmin}}{A, \Theta} \| z_{FOM} - z \|$ s.t. $0 = f(y, \dot{y}, c, u; \mu)$ $A\dot{c} = \widetilde{g}(y, u, c; \mu; \Theta)$ $z = h(y, c, u; \mu)$

Back to Hypersonic aerothermodynamics

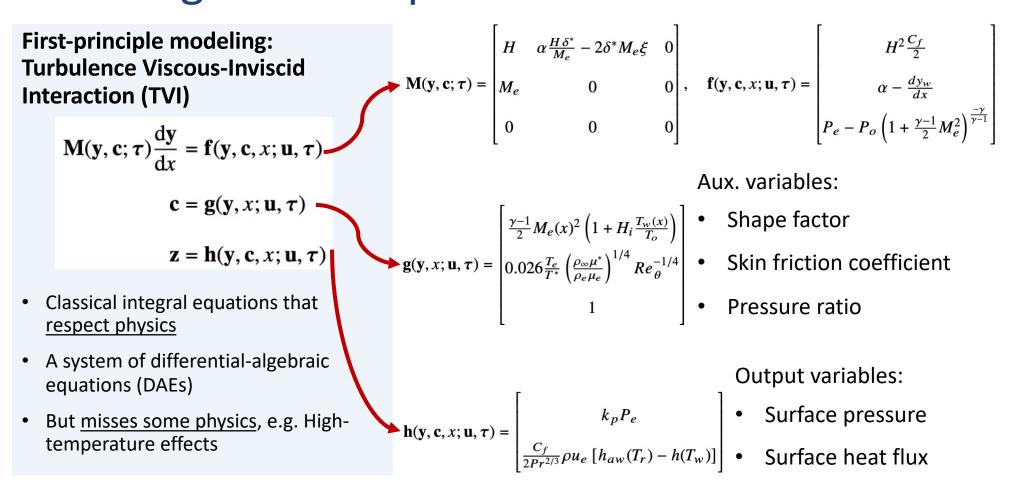
First-principle modeling: Turbulence Viscous-Inviscid Interaction (TVI)

$$\begin{cases} \frac{d}{dx} \left(\frac{\delta^*}{H}\right) + \left(H_i \frac{T_w}{T_o} - 4\right) \frac{\delta^*}{HM_e} \frac{dM_e}{dx} = \frac{C_f}{2} \\ p_e(x) = p_\infty \left(1 + \frac{\gamma - 1}{2} M_\infty \frac{dy_e}{dx}\right)^{\frac{2\gamma}{\gamma - 1}} \\ y_e = y_w + \delta^* \end{cases}$$

- Classical integral equations that respect physics
- A system of differential-algebraic equations (DAEs)
- But <u>misses some physics</u>, e.g. Hightemperature effects



Casting to state-space form



Creating the PIRO model

First-principle modeling: Turbulence Viscous-Inviscid Interaction (TVI)

$$\mathbf{M}(\mathbf{y}, \mathbf{c}; \tau) \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \mathbf{f}(\mathbf{y}, \mathbf{c}, x; \mathbf{u}, \tau)$$
$$\mathbf{c} = \mathbf{g}(\mathbf{y}, x; \mathbf{u}, \tau)$$

 $\mathbf{z} = \mathbf{h}(\mathbf{y}, \mathbf{c}, x; \mathbf{u}, \tau)$

- Classical integral equations that respect physics
- A system of differential-algebraic equations (DAEs)
- But <u>misses some physics</u>, e.g. Hightemperature effects

Model augmentation by functional correction

$$\mathbf{M}(\mathbf{y}, \mathbf{c}; \tau) \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \mathbf{K}(\mathbf{y}, \mathbf{c}, x; \mathbf{u}, \tau)$$
$$\mathbf{c} = \boldsymbol{\beta}(\mathbf{y}, x; \mathbf{u}, \tau) \odot \mathbf{g}(\mathbf{y}, x; \mathbf{u}, \tau)$$

 $\mathbf{z} = \mathbf{h}(\mathbf{y}, \mathbf{c}, x; \mathbf{u}, \tau)$

- To account for missing physics -
- Taking an algebraic multiplicative form
- A new DAE with unknown functions

Learn unknown functionals from data

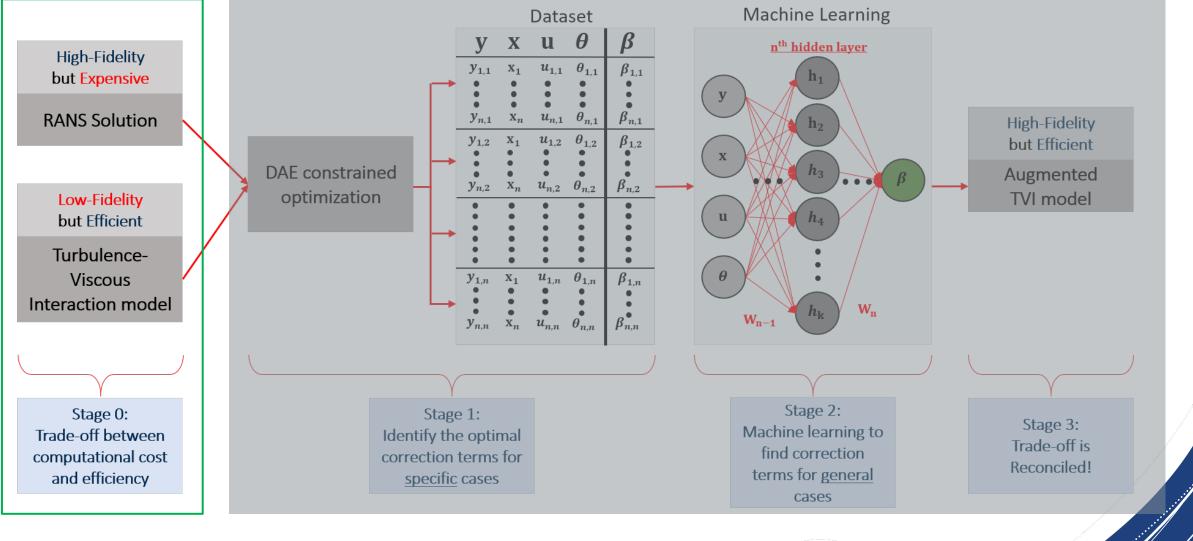
$$\mathbf{B}^{i} = \arg\min_{\mathbf{B}} \quad J(\mathbf{z}_{RANS}^{i}, \mathbf{z}(\mathbf{B}))$$

s.t.
$$\mathbf{M}(\mathbf{y}, \mathbf{c}; \tau) \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \mathbf{f}(\mathbf{y}, \mathbf{c}, x; \mathbf{u}, \tau)$$

$$\mathbf{c} = \boldsymbol{\beta}_{spl}(x; \mathbf{B}) \odot \mathbf{g}(\mathbf{y}, x; \mathbf{u}, \tau)$$
$$\mathbf{z} = \mathbf{h}(\mathbf{y}, \mathbf{c}, x; \mathbf{u}, \tau)$$

- Learn corrections by a DAEconstrained optimization
- Works for computational (RANS/LES/DNS) or experimental data
- <u>Captures more physics and is</u> <u>interpretable!</u>

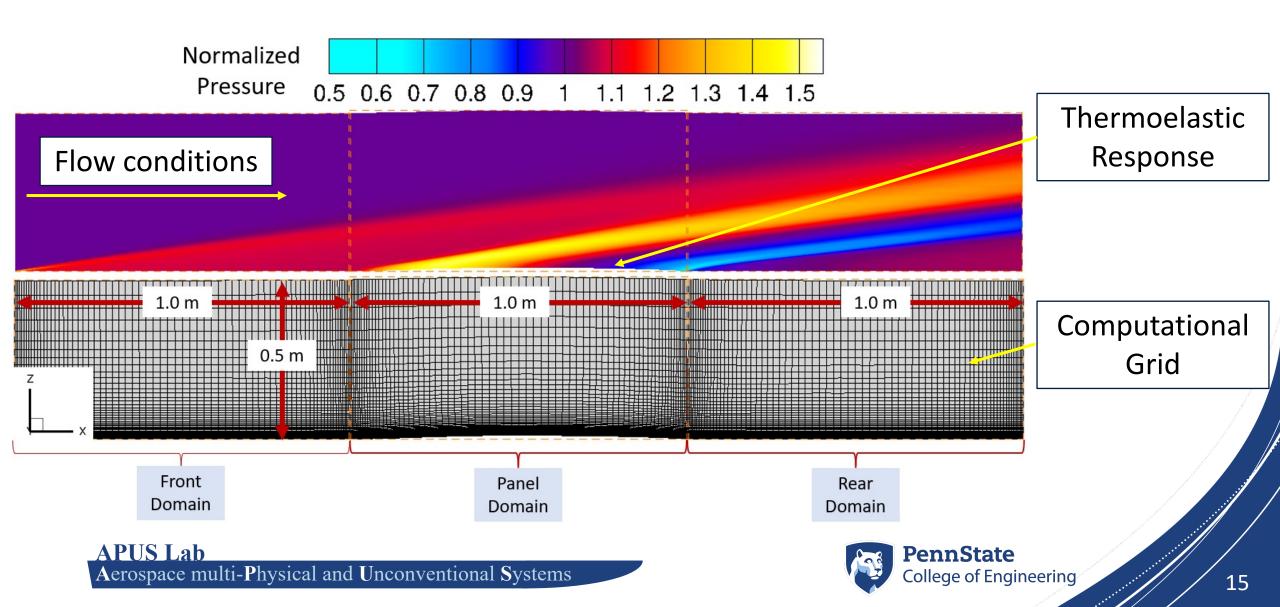
Methodology Overview



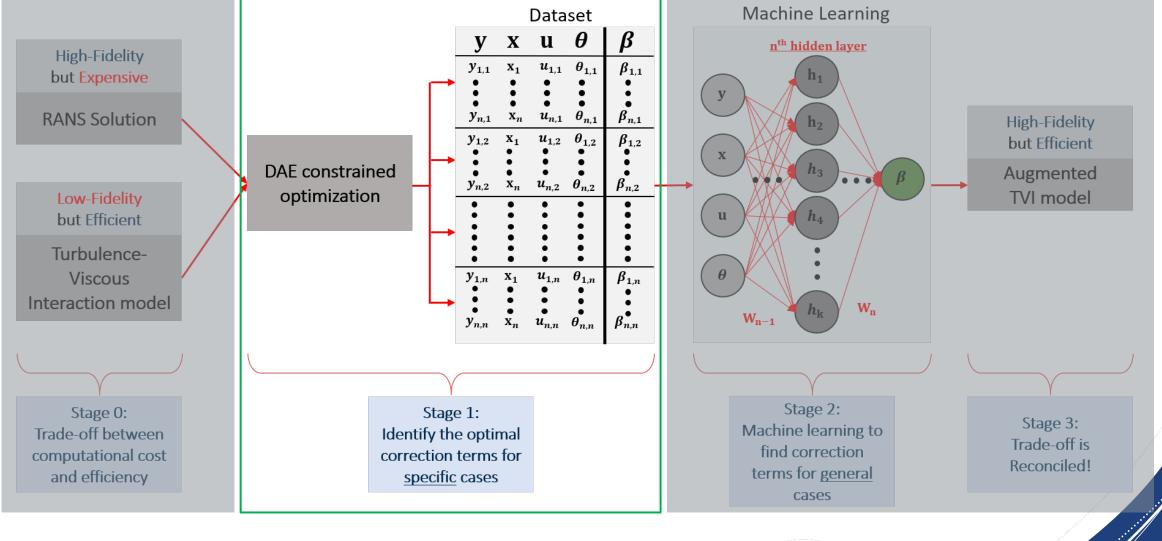
APUS Lab Aerospace multi-Physical and Unconventional Systems

PennState College of Engineering

Stage 0: RANS Solutions

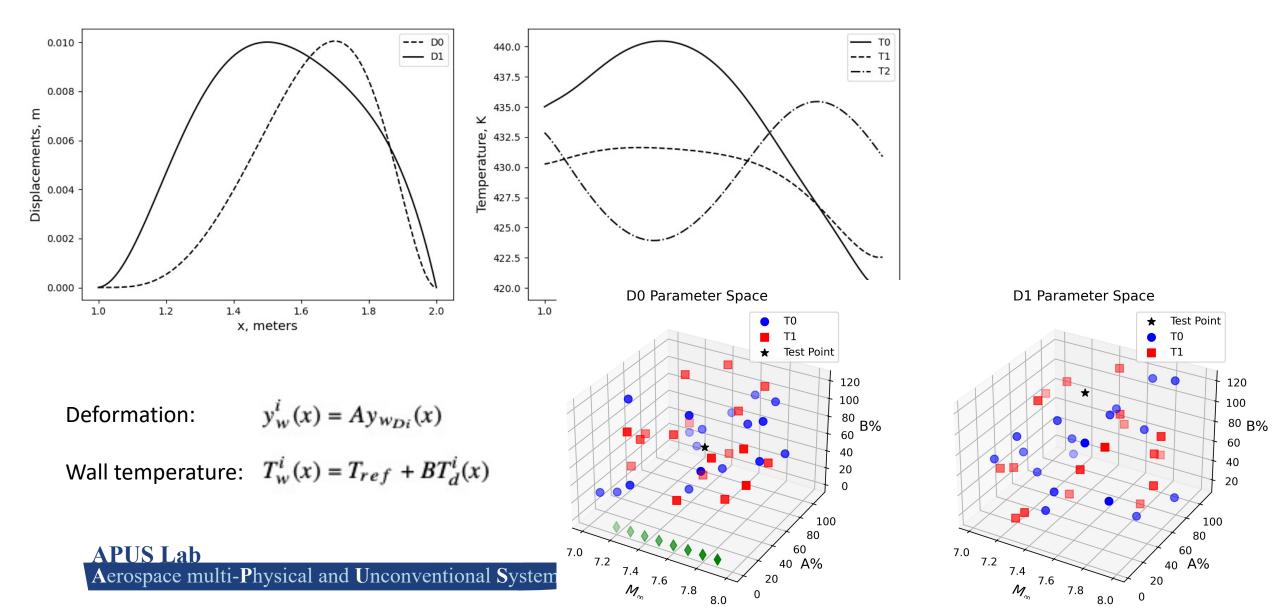


Stage 1: Solving Inverse Problems

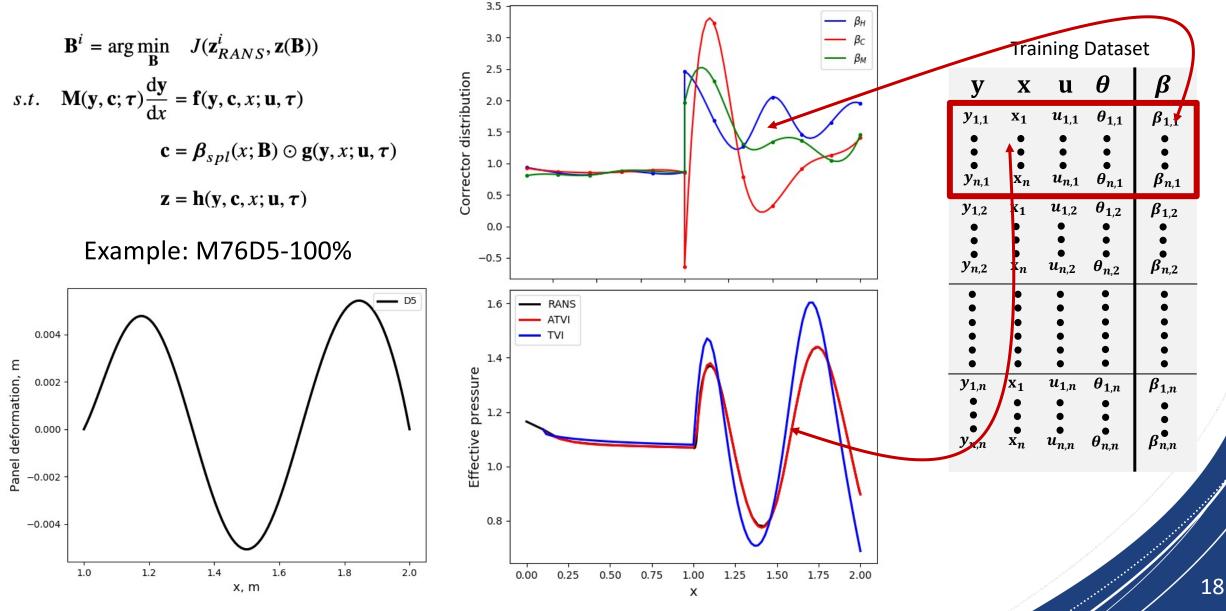


APUS Lab Aerospace multi-Physical and Unconventional Systems

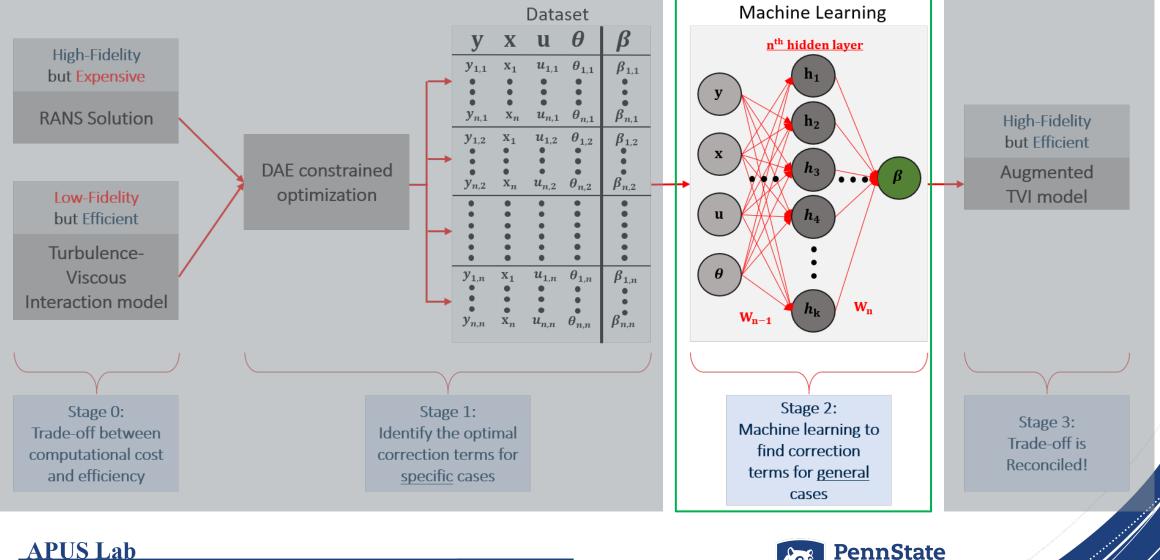
Stage 1, 1/2: Sampling inputs & parameters



Stage 1, 2/2: DAE-Constrained Optimization



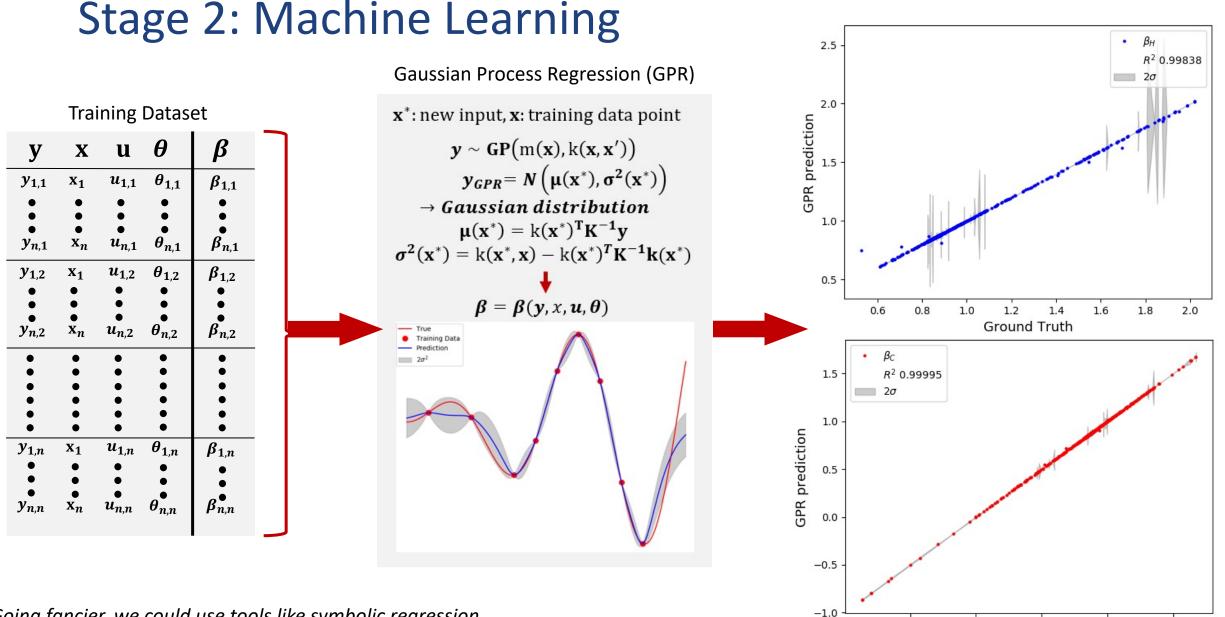
Stage 2: Functional Representation of Correctors



Aerospace multi-Physical and Unconventional Systems

19

College of Engineering



-0.5

0.0

0.5

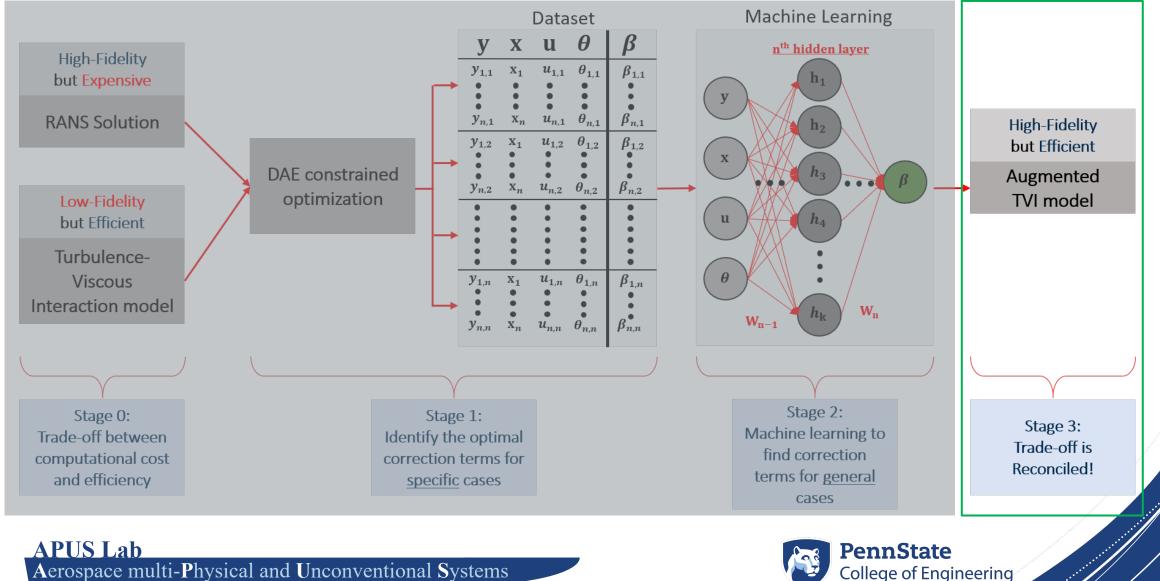
Ground Truth

1.0

1.5

Going fancier, we could use tools like <u>symbolic regression</u> to get analytical expressions for the correction terms!

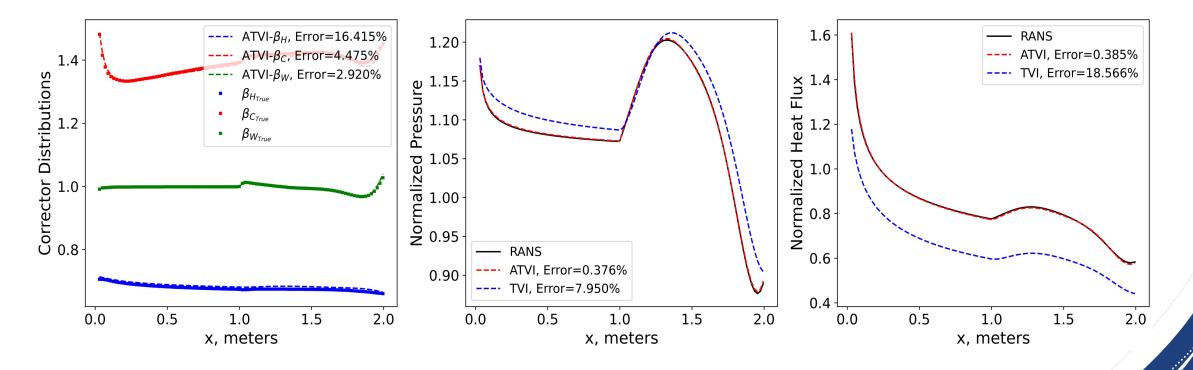
Stage 3: Reconciling Trade-off



21

Demo: New response, New flow conditions

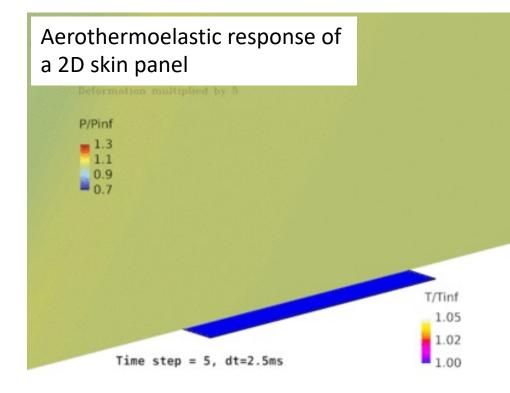
Displacement: $y_w(x) = 0.6[y_w^0(x) + y_w^1(x)]/2$ Wall temperature: $T_w(x) = T_{ref} + 0.7[T_w^0(x) + T_w^1(x)]/2$ Mach number: M = 7.5



Application

Back to Hypersonic Aerothermoelasticity

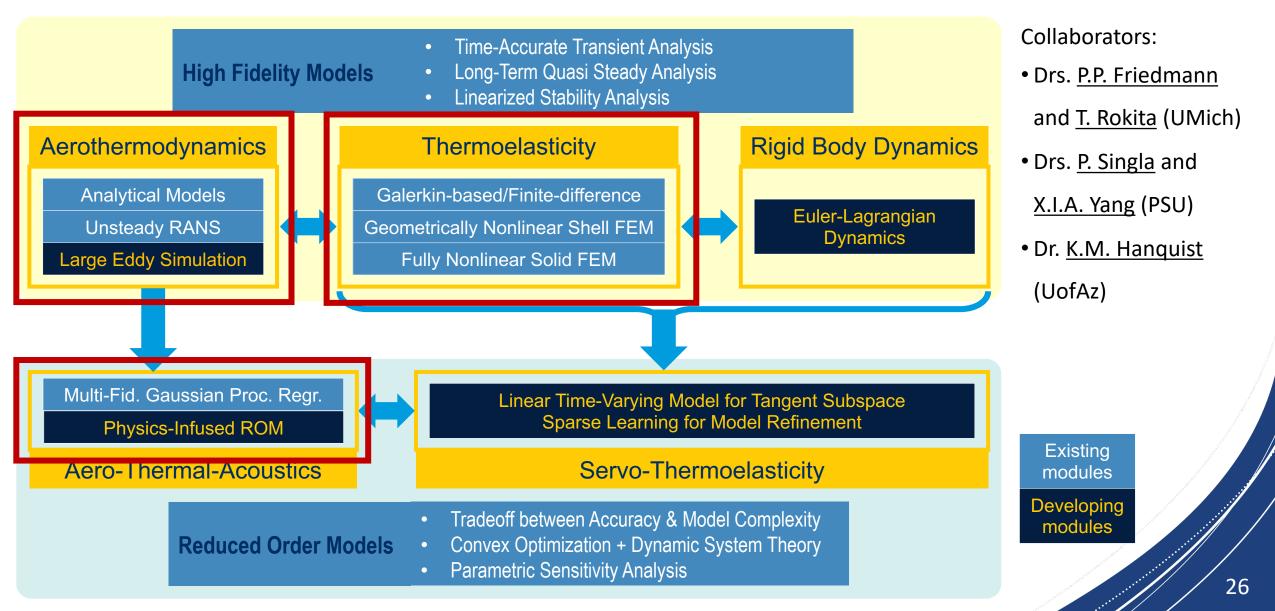
Benchmark case for aerothermoelasticity



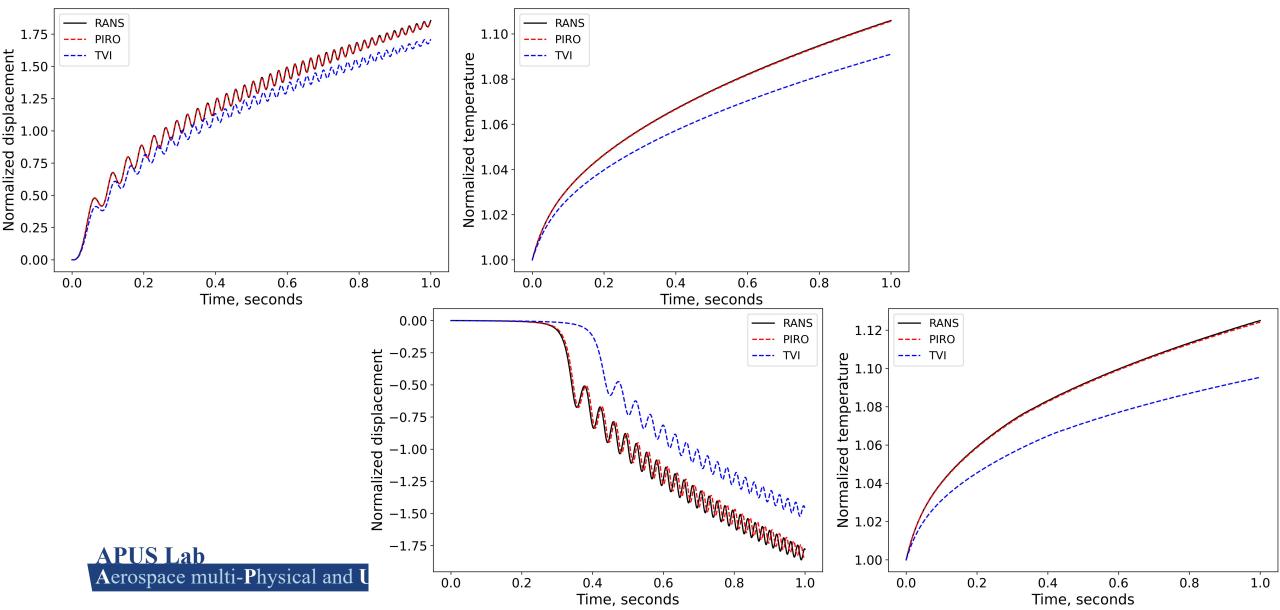
Name	M_{∞}	P_{∞} (Pa)	T_{∞} (K)	Leading edge BC	Trailing edge BC	
M7.523CP	7.523	3759.678	466.200	Clamped	Pinned	
M7.750CC	7.750	3802.521	452.500	Clamped	Clamped	
M7.400SS	7.400	3473.935	390.942	Pinned	Pinned	
M7.523CX	7.523	3759.678	466.200	Clamped	Spring	
M7.400XS	7.400	3473.935	390.942	Spring	Pinned	

APUS Lab Aerospace multi-Physical and Unconventional Systems

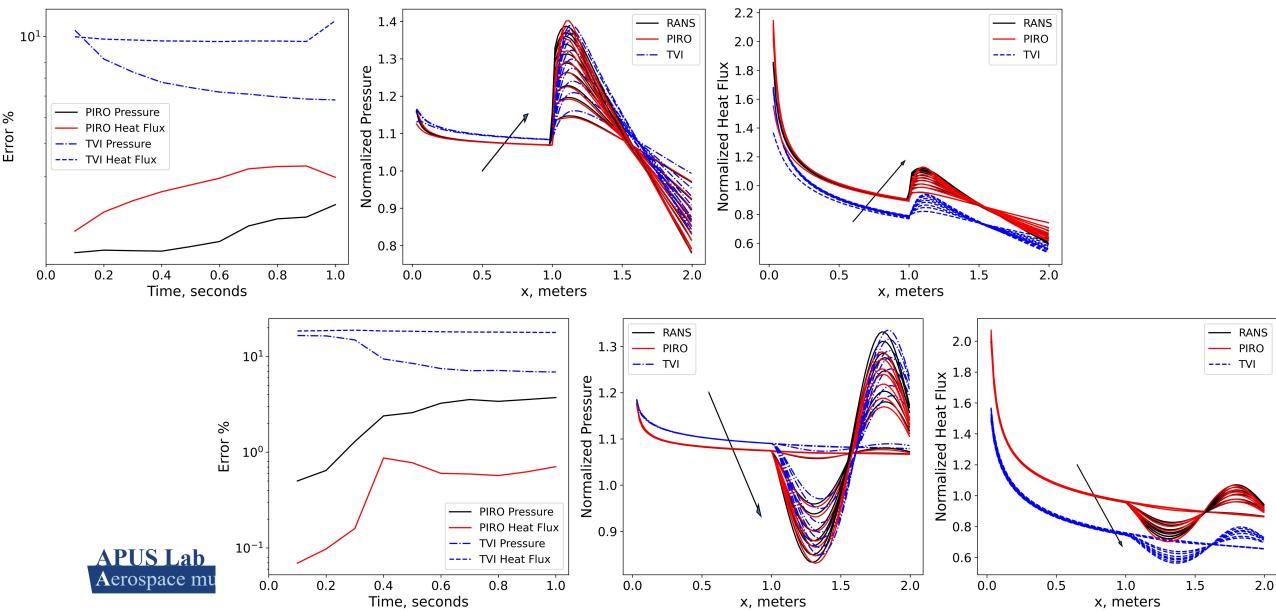
HYPATE-X: HYPersonic AeroThermoElastic eXtended



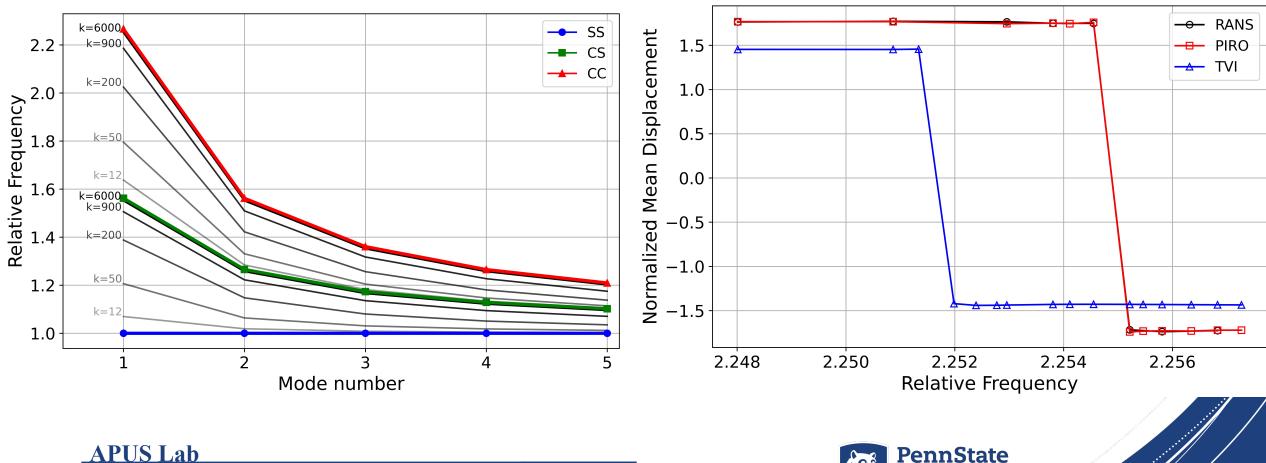
Accuracy of RANS at cost of milli-secs



A closer look at the responses



Enabling parametric study as well



College of Engineering

29

Aerospace multi-Physical and Unconventional Systems

Key takeaways

Summary:

- Presented the formulation of <u>Physics-Infused Reduced-Order Modeling</u>.
- Demonstrated the methodology for a hypersonic aerothermodynamic application.
- Comparing to conventional aerothermal surrogate:
 - Generalize well to <u>operating conditions</u> and <u>thermoelastic responses</u> not in the training data set.
 - □ Requires <10² samples for <u>any response</u>, v.s. 10³-10⁴ samples \rightarrow Much less samples
 - □ Computational cost 90 ms, v.s. 50 ms \rightarrow Similar computational efficiency

Future Work:

- $\circ~$ Extend the methodology for general DAE problems Open to collaborations!
- $\circ~$ Develop a general framework for systematic creation of physics-infused ROM.
- $\circ~$ Couple to frameworks of multi-disciplinary optimization.

Thank you!

Questions?

Contact: <u>daning@psu.edu</u> Lab website: <u>apus.psu.edu</u>