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Background
Hypersonic Aerothermoelasticity
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Barrier to fly at Hypersonic speed

Aerothermoelasticity

SR-72
Image source: Lockheed Martin 

Aerothermoelastic response of 
a 2D skin panel
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As a Multi-disciplinary system

Hypersonic 
Aerothermodynamics

Heat 
Conduction

Structural
Dynamics

Heat flux

Temperature Deformation

Pressure

Temperature

Deformation

• Real gas effect
• Viscous interaction
• Compressible turbulence

• Thermal management
• Material degradation
• Charring and ablation

• Flutter and buckling
• Fatigue and creep
• Reliability assessment
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Challenge to analyze, optimize, control such systems…

Example:
Aerothermal Subproblem

States >109

e.g. flow states

�̇� = 𝒇 𝒙, 𝒖; 𝝁
𝒛 = 𝒉(𝒙, 𝒖; 𝝁)

Input ~103

e.g. thermoelastic response,
control commands

Output ~103

e.g. aerothermal loads

Parameters ~103

e.g. geometrical configuration

High computational cost Vast design space

High-dimensional
optimal control laws &
uncertainty quantification
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What are the options?
Functional form of
predictive model

Generalizability to
system parameters Computational cost

Physics (+ Data) High High

Physics Mid Mid

Physics + Data High? Low?

Data Mid Low

Data Low Low
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Formulation
Physics-Infused Reduced-Order Modeling
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General Idea

Ø Full-Order Model (FOM)

Ø Low-Order Model – First principle, much less states

Ø Physics-Infused Reduced-Order Model

�̇� = 𝑭 𝒙, 𝒖; 𝝁
𝒛 = 𝑯(𝒙, 𝒖; 𝝁)

0 = 𝒇 𝒚, �̇�, 𝒄, 𝒖; 𝝁
𝒄 = 𝒈(𝒚, 𝒖; 𝝁)
𝒛 = 𝒉(𝒚, 𝒄, 𝒖; 𝝁)

0 = 𝒇 𝒚, �̇�, 𝒄, 𝒖; 𝝁
𝑨�̇� = 4𝒈(𝒚, 𝒖, 𝒄; 𝝁)
𝒛 = 𝒉(𝒚, 𝒄, 𝒖; 𝝁)

Examples Boundary layer Slender structure

Full-order Navier-Stokes Eqn. Elasticity Eqns.

States Density, velocity, energy 3D displacement field

Low-order Momentum integral Eqn. Euler-Bernoulli Eqn.

State variables BL thicknesses 1D disp. field

Aux. variables Shape factor, Skin friction Bending stiffness

ß Differential-algebraic Eqn.
ß Auxiliary variables

0 = 𝒇 𝒚, �̇�, 𝒄, 𝒖; 𝝁
𝑨�̇� = 4𝒈(𝒚, 𝒖, 𝒄; 𝝁; 𝚯)
𝒛 = 𝒉(𝒚, 𝒄, 𝒖; 𝝁)ß Augmented form

𝑨∗, 𝚯∗ = argmin
𝑨,𝚯 𝒛"#$ − 𝒛

s.t.

Ø DAE-constrained optimization
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Back to Hypersonic aerothermodynamics
First-principle modeling: 
Turbulence Viscous-Inviscid 
Interaction (TVI)

• Classical integral equations that 
respect physics

• A system of differential-algebraic 
equations (DAEs)

• But misses some physics, e.g. High-
temperature effects

𝑑
𝑑𝑥

𝛿∗

𝐻
+ 𝐻"

𝑇#
𝑇$
− 4
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Casting to state-space form
First-principle modeling: 
Turbulence Viscous-Inviscid 
Interaction (TVI)

• Classical integral equations that 
respect physics

• A system of differential-algebraic 
equations (DAEs)

• But misses some physics, e.g. High-
temperature effects

Aux. variables:

• Shape factor

• Skin friction coefficient

• Pressure ratio

Output variables:

• Surface pressure

• Surface heat flux
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Creating the PIRO model
First-principle modeling: 
Turbulence Viscous-Inviscid 
Interaction (TVI)

• Classical integral equations that 
respect physics

• A system of differential-algebraic 
equations (DAEs)

• But misses some physics, e.g. High-
temperature effects

Model augmentation by 
functional correction

• To account for missing physics -

• Taking an algebraic multiplicative 
form

• A new DAE with unknown functions

Learn unknown functionals from 
data

• Learn corrections by a DAE-
constrained optimization

• Works for computational 
(RANS/LES/DNS) or experimental data

• Captures more physics and is 
interpretable!
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Methodology Overview



APUS Lab
Aerospace multi-Physical and Unconventional Systems 15

Stage 0: RANS Solutions

Computational 
Grid

Thermoelastic
ResponseFlow conditions
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Stage 1: Solving Inverse Problems
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Stage 1, 1/2: Sampling inputs & parameters

Deformation:

Wall temperature:
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Stage 1, 2/2: DAE-Constrained Optimization

Example: M76D5-100%

𝐲 𝐱 𝐮 𝜽 𝜷
𝒚𝟏,𝟏 𝐱𝟏 𝒖𝟏,𝟏 𝜽𝟏,𝟏 𝜷𝟏,𝟏

𝒚𝒏,𝟏 𝐱𝒏 𝒖𝒏,𝟏 𝜽𝒏,𝟏 𝜷𝒏,𝟏
𝒚𝟏,𝟐 𝐱𝟏 𝒖𝟏,𝟐 𝜽𝟏,𝟐 𝜷𝟏,𝟐

𝒚𝒏,𝟐 𝐱𝒏 𝒖𝒏,𝟐 𝜽𝒏,𝟐 𝜷𝒏,𝟐

𝒚𝟏,𝒏 𝐱𝟏 𝒖𝟏,𝒏 𝜽𝟏,𝒏 𝜷𝟏,𝒏

𝒚𝒏,𝒏 𝐱𝒏 𝒖𝒏,𝒏 𝜽𝒏,𝒏 𝜷𝒏,𝒏

Training Dataset
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Stage 2: Functional Representation of Correctors
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Going fancier, we could use tools like symbolic regression
to get analytical expressions for the correction terms!

Stage 2: Machine Learning

𝐲 𝐱 𝐮 𝜽 𝜷
𝒚𝟏,𝟏 𝐱𝟏 𝒖𝟏,𝟏 𝜽𝟏,𝟏 𝜷𝟏,𝟏

𝒚𝒏,𝟏 𝐱𝒏 𝒖𝒏,𝟏 𝜽𝒏,𝟏 𝜷𝒏,𝟏
𝒚𝟏,𝟐 𝐱𝟏 𝒖𝟏,𝟐 𝜽𝟏,𝟐 𝜷𝟏,𝟐

𝒚𝒏,𝟐 𝐱𝒏 𝒖𝒏,𝟐 𝜽𝒏,𝟐 𝜷𝒏,𝟐

𝒚𝟏,𝒏 𝐱𝟏 𝒖𝟏,𝒏 𝜽𝟏,𝒏 𝜷𝟏,𝒏

𝒚𝒏,𝒏 𝐱𝒏 𝒖𝒏,𝒏 𝜽𝒏,𝒏 𝜷𝒏,𝒏

Training Dataset

Gaussian Process Regression (GPR)
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Stage 3: Reconciling Trade-off
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Demo: New response, New flow conditions
Displacement: 𝑦1 𝑥 = 0.6 𝑦12 𝑥 + 𝑦13 𝑥 /2
Wall temperature: 𝑇1 𝑥 = 𝑇456 + 0.7 𝑇12 𝑥 + 𝑇13 𝑥 /2
Mach number: 𝑀 = 7.5
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Application
Back to Hypersonic Aerothermoelasticity
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Benchmark case for aerothermoelasticity

Aerothermoelastic response of 
a 2D skin panel
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HYPATE-X: HYPersonic AeroThermoElastic eXtended

Reduced Order Models
• Tradeoff between Accuracy & Model Complexity
• Convex Optimization + Dynamic System Theory
• Parametric Sensitivity Analysis

Aero-Thermal-Acoustics Servo-Thermoelasticity

Linear Time-Varying Model for Tangent Subspace
Sparse Learning for Model Refinement

Multi-Fid. Gaussian Proc. Regr.

Physics-Infused ROM

Aerothermodynamics Thermoelasticity Rigid Body Dynamics

Analytical Models

Unsteady RANS

Large Eddy Simulation

Galerkin-based/Finite-difference

Fully Nonlinear Solid FEM

Geometrically Nonlinear Shell FEM Euler-Lagrangian
Dynamics

High Fidelity Models
• Time-Accurate Transient Analysis
• Long-Term Quasi Steady Analysis
• Linearized Stability Analysis

Existing 
modules

Developing 
modules

Collaborators:

• Drs. P.P. Friedmann

and T. Rokita (UMich)

• Drs. P. Singla and 

X.I.A. Yang (PSU)

• Dr. K.M. Hanquist

(UofAz)



APUS Lab
Aerospace multi-Physical and Unconventional Systems 27

Accuracy of RANS at cost of milli-secs
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A closer look at the responses
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Enabling parametric study as well
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Key takeaways
Summary:
o Presented the formulation of Physics-Infused Reduced-Order Modeling.
o Demonstrated the methodology for a hypersonic aerothermodynamic application.
o Comparing to conventional aerothermal surrogate:
q Generalize well to operating conditions and thermoelastic responses not in the training data set.
q Requires <102 samples for any response, v.s. 103-104 samples à Much less samples
q Computational cost 90 ms, v.s. 50 ms à Similar computational efficiency

Future Work:
o Extend the methodology for general DAE problems – Open to collaborations!
o Develop a general framework for systematic creation of physics-infused ROM.
o Couple to frameworks of multi-disciplinary optimization.
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Thank you!

Questions?

Contact: daning@psu.edu
Lab website: apus.psu.edu

mailto:dnhuang@umich.edu

