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§ Premises: 
— New pathogens can emerge with little warning
— The immune system may need assistance to effectively counter a new pathogen
— Vaccine antigens and therapeutic antibodies are the most important protein design targets

• Basically the only things that have worked at all for COVID 

§ Ordinarily, vaccines and therapeutic antibodies take years or decades to reach market

§ In the long-term, we want a system for scalable, high-confidence, in silico design
that could accelerate delivery of a countermeasure that is (1) effective, (2) 
manufacturable, and (3) safe.

§ In a familiar LLNL plan, do design & certification as much as possible in the computer
— Critically, this can enable preemptive design against emerging virus variants or novel members of 

families of pathogens

The problem: how can you rapidly respond to a new pathogen?
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§ Select & simulate 
computationally until 
promising candidates are 
found

§ Send best candidates for 
laboratory testing

§ If necessary, re-design from 
most promising candidates 
identified in the laboratory

Our approach to countermeasure design combines simulation 
and ML-driven decision-making with laboratory experimentation
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§ From Jan 2020 to present, designed several neutralizing antibodies for SARS-CoV-2

We’ve executed and validated rapid antibody design against 
SARS-CoV-2: novel to our knowledge

Better

Our best antibody
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Viruses reproduce by entering and hijacking host cells
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If we could stop viral entry, we could stop the viral cycle
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Neutralizing antibodies can stop viral entry
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Proteins are described by their amino acid sequence:
Antibody design becomes finding a suitable sequence

> m396 light chain 
SYELTQPPSVSVAPGKTARITCGGNNIGSKSV
HWYQQKPGQAPVLVVYDDSDRPSGIPERFS
GSNSGNTATLTISRVEAGDEADYYCQVWDSS
SDYVFGTGTKVTVLGQPKANPTVTLFPPSSE
EFQANKATLVCLISDFYPGAVTVAWKADGSP
VKAGVETTKPSKQSNNKYAASSYLSLTPEQW
KSHRSYSCQVTHEGSTVEKTVAPTECS

> m396 heavy chain 
QVQLQQSGAEVKKPGSSVKVSCKASGGTFS
SYTISWVRQAPGQGLEWMGGITPILGIANY
AQKFQGRVTITTDESTSTAYMELSSLRSEDTA
VYYCARDTVMGGMDVWGQGTTVTVSSAS
TKGPSVFPLAPSSKSTSGGTSALGCLVKDYFP
EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS
SVVTVPSSSLGTQTYICNVNHKPSNTKVDKK
VEPKSCDKTSPLFVHHHHHHGDYKD
DDDKG

H

L

H

L

m396 neutralizes SARS-CoV-1, but not SARS-
CoV-2; can its sequence be modified to bind 
a target antigen and neutralize a new virus?
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The design space is vastly larger than what we 
can simulate or test 

Laboratory
Experiments

100-1,000

Computer
Simulations
1,000,000

CoV-2
Need just one!

CoV-1 + 
changes

~1030
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§ In simulation and in the laboratory, we can ask questions like:
— How strongly does the antibody bind its target?                dG (binding free energy) or KD (rate const.)
— How does this change as we mutate the antibody?           ddG (mutational change in dG)

Strong binding is our main target; 
neutralization objective may follow 

Spike 
Protein

testmake
Simulate
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Platform software and active machine learning support these 
simulation and experimental tools
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§ Improve the antibody sequence by iteratively selecting antibodies from a discrete set 
and evaluating them

Pose the design problem as active learning

> m396 mutable residues 
…GTFSSYTIS…WMGGITPILGIANY…RDTV
MGGMDV…/…NIGSKSVH…LVVYDDSDRPS
…QVWDSSSDY

S K

dG, ddG, or KD
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§ Generators for novel sequences have so far been 
mostly tabular
— Based on frequency of “typical” mutational “swaps”
— OR based on expensive, high-fidelity calculations of single 

changes to template antibody in hypothesized complex 
with SARS-CoV-2 spike.

§ This works all right, but can lead you to unrealistic 
sequence designs
— Downstream problems in manufacturability, etc. are major 

concerns

Enumerate many antibody designs Generate mutant 
sequences

> m396 mutable residues 
…GTFSSYTIS…WMGGITPILGIANY…RDTV
MGGMDV…/…NIGSKSVH…LVVYDDSDRPS
…QVWDSSSDY

S K
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More realistic antibody sequences via language modeling Generate mutant 
sequences

§ Use a transformer model to learn to fill “masked” amino acids in the antibody 
sequence

S S Y[START] S D G Y [END]

…D A
0.70 0.20

Score Possible Fill-ins

S Q L V D N WT L

S S Y[START] S ? G Y [END]S Q L V D N WT L

… …

……

Annotated L1 from s230

Mask
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Our models learn to produce reasonable antibodies

Mask

Predictmask and predict 3 central amino 
acids of s230’s L1 “loop” 

Generate mutant 
sequences
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Our models learn to produce reasonable antibodies

mask and predict all 16 amino 
acids of s230’s L1 “loop”

Generate mutant 
sequences

Mask Predict

Structurally-
identified 
contacts
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To predict how an antibody sequence will bind, we use a 
structure-based representation of the interactions Predict and optimize via 

active machine learning
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x = [0, 1, 0, 2, 0, 0, 1, … ] 
Vector of interaction type counts
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Represented in feature space, binding free energy estimates 
feed into a multi-fidelity Gaussian process model
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Executed studies
Data: {(x, i, y)1 , … (x, i, y)n }

Each is a tuple: 

(               , FoldX, -4.3)
Observations

Gaussian process model: 
𝑓: 𝑥, 𝑖 → 𝜇 𝑥, 𝑖 , 𝜎(𝑥, 𝑖)

Predict and optimize via 
active machine learning
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The next set of simulations is selected via Bayesian 
optimization using the Gaussian process model

Decision set: PROPOSED studies

(            , FoldX,__)
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Executed studies
Data: {(x, i, y)1 , … (x, i, y)n }

Each is a tuple: 

(               , FoldX, -4.3) Gaussian process model: 
𝑓: 𝑥, 𝑖 → 𝜇 𝑥, 𝑖 , 𝜎(𝑥, 𝑖)

Score: 
s(𝜇 𝑥, 𝑖 , 𝜎 𝑥, 𝑖 )

Selection: 
𝑥, 𝑖 ! = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑠

Predict and optimize via 
active machine learning



In Silico
and so on to . . . Agent 350
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via active machine 
learning Simulate

20



21



Existing
Experimental 

data

Simulation 20

Simulation 1

Simulation 20

Simulation 1

Simulation 20

Simulation 1

Simulation 20

Simulation 1

10,000 simulations 100,000’s 
simulations

~ 8 hours
Mutants 

selected for 
experimental 

evaluation

Simulation results
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~ 1-3 weeks
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Recall: 
down and left is more virus 
neutralized needing less 
antibody = better
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We confirmed these m396-derived antibodies neutralize authentic 
SARS-CoV-2 virus in our BSL-3 facility
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§ LLNL:
Daniel Faissol, Adam Zemla, Ed Lau, Fangqiang Zhu, John Goforth, 
Denis Vashchenko, Mary Silva, Rebecca Haluska, Claudio Santiago, Sam 
Nguyen, Drew Bennett, Emilia Grzesiak, Brent Segelke, Feliza
Bourguet, Victoria Lao, Monica Borucki, Dina Weilhammer, Jacky Lo, 
Nicole Collette, Kathryn Arrildt, and Magdalena Franco (now 
ThermoFisher)

§ Sandia NL:
Brooke Harmon, Oscar Negrete, Max Stefan

§ Generous computer time and support from LC!
— Catalyst, early access to Mammoth
— Workflow enablement (database) and Sina (database interface) 

groups are critical to our ongoing success

This work is the product of a growing multidisciplinary team

PyTorch, GPyTorch, BioPython
Maestro, Sina, Improv
FoldX, RosettaFlex
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