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Malicious Attacks Against Deep Neural Network

Deep neural network (DNN) successful at complex tasks, such as

image classification, object recognition etc.

DNN used in autonomous systems, but forward thinking AI is not

secured against potential attacks.

Existing work focused on adding minor perturbation to an input based

on an optimization approach.

We study DNN’s classification boundary through its response surface

and uncertainty regions to see what cause the adversarial examples.

We study both convolutional NN and fully connected NN.

We develop a game theory inspired strategy to improve DNN robust-

ness facing adversaries.



Many Unanswered Questions about DNN

What is the shape of DNN classification boundary?

How many adversarial examples are there given one clean image? –

Currently one to a few dozen.

Are adversarial examples transferable? – Belief of transferability.

What caused these adversarial examples? – Linear vs Non-linear



Stronger Adversarial Attack

First work to study DNN response surface and propose the concept

of DNN uncertainty regions.

Identify the regions for infinitely many adversarial examples in a small

neighborhood surrounding a clean image – a stronger attack.

Transferability of adversarial examples is not universal.

Existing attacks, e.g., C&W L2, cause errors from only one targeted

DNN model. We use less pixels, have smaller perturbations added to

a clean image, and attack multiple DNNs simultaneously.

Shu, J., Xi, B., Kamhoua, C. A., Understanding Adversarial Examples Through

Deep Neural Network’s Response Surface and Uncertainty Regions, arXiv



Lower Dimensional Projection of MNIST

Use t-SNE, a nonlinear dimension reduction technique.



Adversarial Examples

Left to right: (1) Clean image 1; (2)Fast Gradient Sign Method

(FGSM) Attack 1 → 2; (3) Carlini & Wagner L2 (CW2) Attack

1→ 5; (4) Pointwise (PW) Attack 1→ 8.



DNN Response Surface and Uncertainty Regions

Response surface methodology well studied in statistics, ignored by

machine learning community.

Image W , a matrix for grayscale, a tensor for color. Elements integer

valued, 0, 1, ..., 255. Rescaled to [0,1].

t is a object class (e.g., a digit for MNIST).

DNN response surface is described by Mi(W ) = t.

M1 to Mk are obtained by having one DNN model trained on the

same training data, and only varying the initial values.

DNN uncertainty region

U :=
{
W : ∃i, j ∈ (1, ..., k), s.t. Mi(W ) 6= Mj(W )

}
.



MNIST Experiment

We use LeNet (LeCunn et. al. 1998) for MNIST. W ∈ [0,1]784.

Train LeNet with different starting values, obtained 10 models.

LeCunn et. al. 1998 reported the highest test accuracy as 99.05%

Others between 96% to around 99%

Below is misclassification rate for clean test images.

M1 M2 M3 M4 M5
0.033 0.035 0.025 0.019 0.017
M6 M7 M8 M9 M10
0.015 0.013 0.012 0.012 0.012



Adversarial Attacks

Foolbox has 42 attack algorithms. Most either generate a handful

of adversarial examples or add large perturbations. Six used in the

experiments.

Pointwise (PW) Attack, min||W a −W ||0, the number of perturbed

pixels.

Carlini & Wagner L2 (CW2), min{Distance(W,W a) + c× loss(W a)}.

Fast Gradient Sign Method (FGSM), W a = W − ε× sign(∇loss(W )).

NewtonFool (NF) Attack, Basic Iterative Method (BIM), Moment

Iterative (MI) Attack also search for the gradient.



DNN Response Surface and Uncertainty Regions

We compute L2 distance d(W c,W a) = ||W c −W a||2.

We study DNN response surface and uncertainty regions in

B(δ) := {W : d(W c,W ) ≤ δ}, with a small δ.

Attack M1. Need each attack algorithms to generate at least 80-100

adversarial images for a digit t 6= 1.

If ∃W a
i 6= W c

i , compute si = maxattack k(W a
k,i) − minattack k(W a

k,i).

Rank perturbed pixels by s(1) ≥ s(2) ≥ · · · s(m).

Construct a hyper-rectangle based on intervals not deemed as a con-

stant.

Rk(t) = [min (W a
k,(1)), max (W a

k,(1))]⊗· · ·⊗[min (W a
k,(h)), max (W a

k,(h))].



DNN Response Surface and Uncertainty Regions

Additional dimensions – add a constant amount to a pixel. Do not

change the shape and size of Rk(t). Only move Rk(t) to a different

location, increasing total perturbations. Table shows misclassifica-

tion rate.

s(i) M1 M3 M6

FGSM 375d 1→ 2 0.012 0.915 0 0
CW2 175d 1→ 5 0.011 0.047 0.135 1
PW 35d 1→ 8 1 0.809 0.48 0.974



DNN Response Surface and Uncertainty Regions

Carlini & Wagner L2 attack and FGSM eventually move Rk(t) to

where M1 misclassification rate nearly 100%, other Mjs 0. Table

shows L2 distance.

Lmin2 Lmax2 L̄2 Lmin2,a Lmax2,a L̄2,a

FGSM 1→ 2 14.259 14.41 14.335 14.413 15.213 14.784
CW2 1→ 5 10.743 12.989 11.567 9.932 16.703 12.298
PW 1→ 8 5.205 14.84 10.023 12.526 26.526 17.329



Sampled from Hyper-Rectangles

Left to right: (1)FGSM subspace 1 → 2; (2) CW2 subspace 1 → 5;

(3) PW subspace 1→ 8.



CIFAR10

CIFAR10 has 60,000 32x32 color images in 10 classes, 50,000 as

training and 10,000 as test.

A CIFAR10 image is in [0,1]3072.

We re-train the MobileNet, which has an initial convolution layers

followed by 19 residual bottleneck layers, a complex structure to re-

duce memory usage.

The misclassification rates of five re-trained MobileNet models on

the clean test images.

M1 M2 M3 M4 M5
0.0767 0.0728 0.0734 0.0727 0.0744



CIFAR10

MobileNet Attack Misclassification Rates

M1 M2 M3 M4 M5
BIM L2 3017d airplane→deer 1 0 0.88 0 0

Left: clean airplane; Mid: airplane labeled as deer by BIM L2

attack; Right: airplane labeled as deer by sampling.



CIFAR10

The misclassification rates as increasing the dimensions of the hyper-

rectangle. The largest interval is 0.2 and the 2000th interval is 0.017.

M1 under attack. See also M5, M2 and M4. The direction of

adversarial perturbation is important. Adversarial examples cannot

be generated by randomly sampling in 3072d B(δ,W ).



DNN Classification Boundary

Conceptual plot in a δ−neighborhood of a clean image. For digit 1

(784-dim), let δ = 6. Three types of “cracks”.



Robust DNN

Randomization strategy inspired by mixed strategy in game theory.

1. Randomly select a DNN from a pool of DNNs

2. Ensemble of a random set of DNNs

3. Add small random noise to the learned weights of a DNN

Utilizing the non-convex optimization process in DNN training.

Zhou, Y., Kantarcioglu, M., Xi, B., Exploring the Effect of Randomness on Trans-

ferability of Adversarial Samples against Deep Neural Networks, revision submitted



Robust DNN

Assume d(W c,W a) ≤ ε. Attacking Mj in a pool of M1, ..., Mn. At-

tacker has perfect knowledge about Mj, but doesn’t know the rest

of DNNs.

Baseline: accuracy on clean test images W c.

Static: accuracy on W a using the model under attack Mj.

Random-Model-n: randomly pick 1 from (M1, ..., Mn) to label W a.

Ensemble-n: majority vote of (M1, ..., Mn).

Ensemble-AdTrain: for comparison, Ensemble Adversarial Train-

ing.

Ensemble-AdTrain-Random: randomly pick 1 model from adver-

sarially trained models.

Random-Weight: randomly pick 1 Mk, add random noises to some

weights.

Random-Weight-n: add random noises to every model in the pool,

use majority vote.



German Traffic Sign



Tiny ImageNet



DNN classification boundary is fractured, unlike other classifiers.

Adversarial examples stem from DNN’s structural defect. A more

serious problem than previously imagined.

DNN has uncertainty regions and transferable adversarial regions.

Established theoretical guarantee for DNN, generalization error as

O(c(depth, width)√
n

), cannot adequately describe the phenomenon of DNN

adversarial examples.

Randomization strategy can improve the robustness against adver-

sarial examples.

Improving a single DNN’s robustness needs more effort.



A Grid Adversarial Clustering Algorithm
Compare with a semi-supervised learning algorithm, S4VM. α = 0.6.
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Left: actual clusters with blue for normal and orange for abnormal;

Middle: our ADClust with purple for unlabeled; Right: S4VM. Solid

circles (normal) and solid triangles (abnormal) are known correctly

labeled objects.



Adversarial SVM

AD-SVM solves a convex optimization problem where the constraints

are tied to adversarial attack models.

Need to improve ML techniques for adversarial environment.

Game theory equilibrium solution provides a conservative strategy

facing adversaries for many classifiers.


