

FROM HPC TO THE EDGE TO ENABLE ACCELERATED AND REPRODUCIBLE AI DISCOVERY

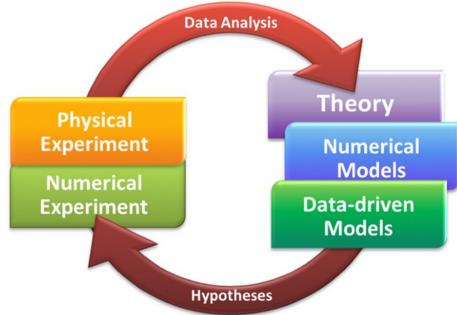
ELIU HUERTA Lead for Translational Al Computational Scientist Data Science and Learning Division Department of Computer Science, University of Chicago

Machine Learning for Industry Forum August 10-12, 2021

BIO

Theoretical Astrophysicist, Mathematician, Computer Scientist

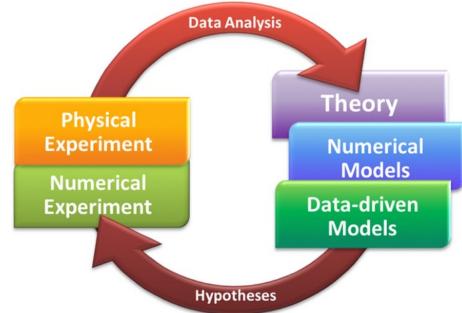
Lead for Translational AI Data Science and Learning Division Argonne National Laboratory


Department of Computer Science, University of Chicago Department of Physics, University of Illinois at Urbana-Champaign

> PhD in Theoretical Astrophysics Master of Advanced Study in Mathematics University of Cambridge, UK

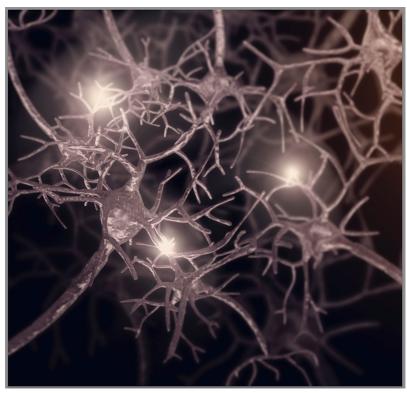
WHAT

Transition from **first principles** modeling and large-scale simulation to domain-informed, interpretable, accelerated and reproducible **A**I



HOW

Bridge the gap between AI based on first principles & simulated data and AI that captures the complexity and nonlinearity of experimental data


DO's & DON'Ts

DO's: Translational Research

Who's been there and done that?

Learn from success and avoid pitfalls

Awareness: Open Source Software for Data-driven discovery [NVIDIA, Argonne, ...]

DO's & DON'Ts

AT ARGONNE

Data Science and Learning Division

https://www.anl.gov/dsl

IN THE NEWS

Al Detects Gravitational Waves Faster than Real Time

NVIDIA

IN THE NEWS

Detecting gravitational waves using AI

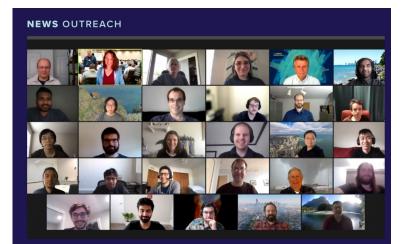
Tech Explorist

IN THE NEWS

Scientists develops AI model to detect gravitational waves

Sify

CONTACT US


Data Science and Learning General Inquiries +1-630-252-2000

Al Distinguished Lecture Series

Argonne's AI Distinguished Lecture Series feature pioneers and innovators from around the world conducting research in foundational and applied AI. The lectures cover a wide variety of topics in academia, industry, finance, and technology.

LEARN MORE

Argonne Leadership Computing Facility https://www.alcf.anl.gov

ALCF training events help prepare researchers for current and future supercomputers

AT ARGONNE

Be nimble and agile

Harness extensive expertise in applied AI and advanced computing

Identify critical areas of development

Enhance & develop AI skills within your company

David Martin

Manager, Industry Partnerships and Outreach

+1 630-252-0929 dem@alcf.anl.gov

Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 3126 Argonne, IL 60439

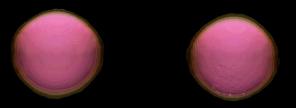
© Daniel Voshart

facta, non verba

SAMPLE CASES

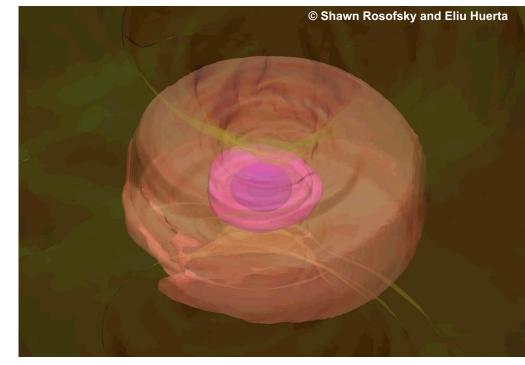
AI SURROGATES

Multi-scale and multi-physics simulations


© Never underestimate a drone: deep learning for turbulence Astrobites blog, 2 Jan 2020

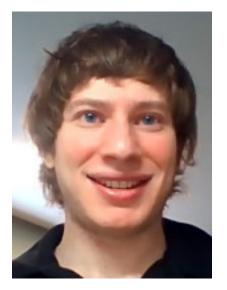
Turbulence: approximate, first principles models; highly nonlinear; complex mathematical formulation

May AI be capable of learning and accurately describing the physics of turbulence?



WHAT

Gravitational (and electromagnetic) wave observations of neutron star mergers



AI FOR TURBULENCE

Data-driven discovery Cross-pollinate expertise between academia and industry

Shawn Rosofsky

PHYSICAL REVIEW D

Highlights Recent Accepted Collections Authors Referees Search Press

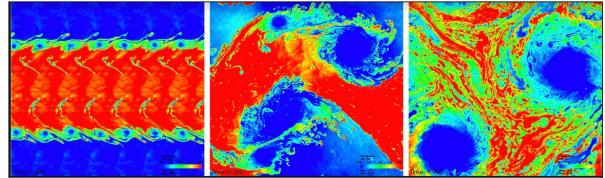
Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence

Shawn G. Rosofsky and E. A. Huerta Phys. Rev. D **101**, 084024 – Published 9 April 2020 **MITRE** | SOLVING PROBLEMS FOR A SAFER WORLD' ABOUT CENTERS CAPABILITIES RESEARCH

Focal Points

AI AND MACHINE LEARNING

We're harnessing the power of artificial intelligence and machine learning in ways that benefit our nation, with an emphasis on ethics and safeguarding privacy.


CONVERGENCE OF AI AND LARGE SCALE SIMULATIONS Star Crash

HOW

Artificial Intelligence on XSEDE Systems Is Key to Speeding Simulations of Neutron Star Mergers

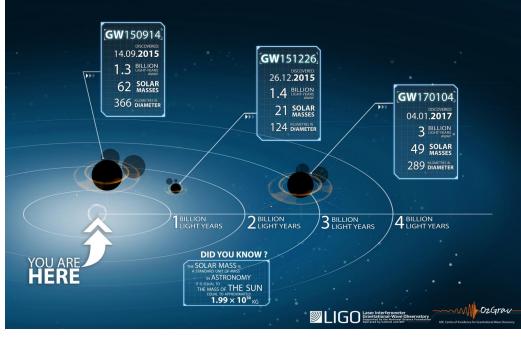
By Ken Chiacchia, Pittsburgh Supercomputing Center

The intense magnetic fields accompanying movement of matter from neutron-stars past each other causes increasingly complicated turbulence that is computationally expensive with standard simulation methods. In this time series, a deep learning AI provides a simulation of this process at a fraction of the computing time.

© Daniel Voshart

facta, non verba

SAMPLE CASES

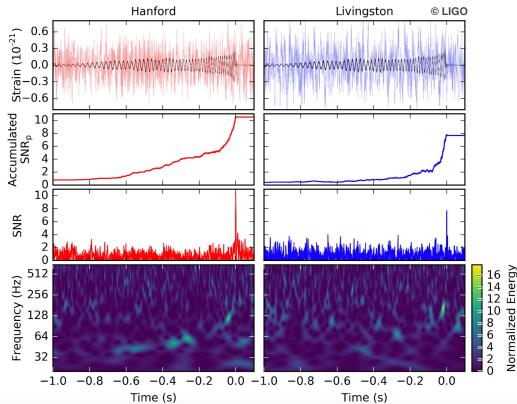


WHAT

Ground-based detectors continue to improve their sensitivity to gravitational wave sources

EXTRACTING WEAK SIGNALS IN NOISY BACKGROUNDS

Realistic datasets

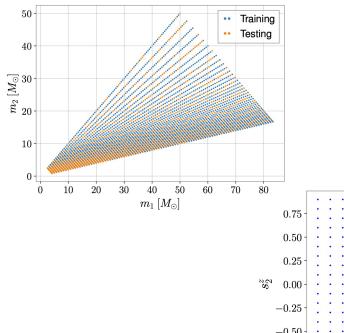

Challenge:

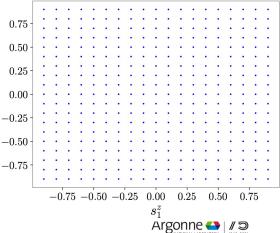
High-dimensional signal manifold

Lightweight, high speed data production

Non-Gaussian and non-stationary noise

Noise contamination





WHAT

Demonstrate that AI + HPC provide a novel solution for production scale AI-driven gravitational wave detection

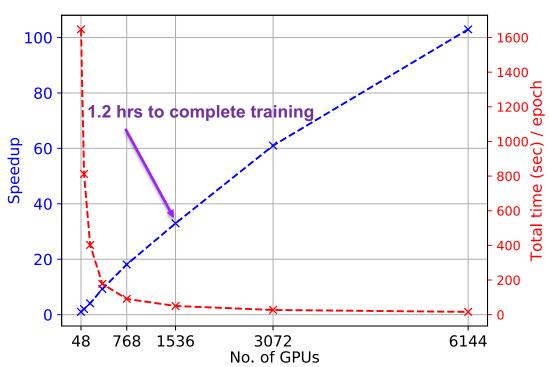
Consider 4-D signal manifold of real-time gravitational wave detection algorithms

WHY

Number of detections continues to grow

Available computational resources remain finite and oversubscribed

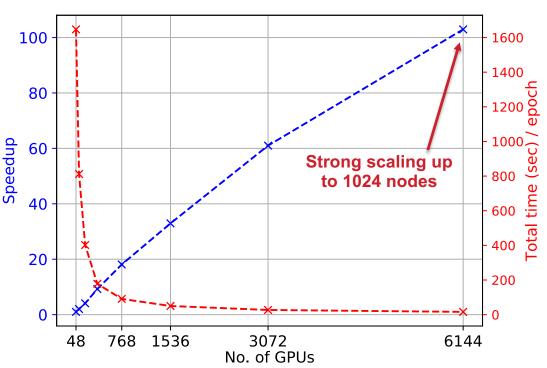
Radical re-thinking of computational methods for gravitational wave discovery



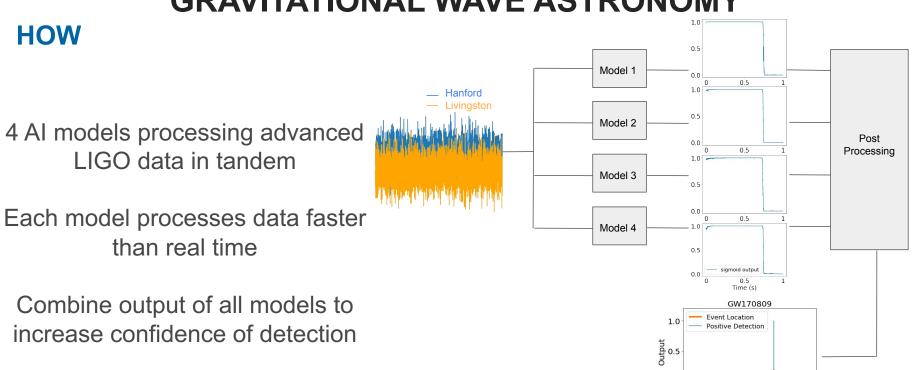
WHAT

Densely sampling this 4-D signal manifold requires millions of modeled waveforms

Training stage: 1 month with a single NVIDIA V100 GPU



HOW


Deployed and used new optimizers in Summit to reach optimal classification performance

600-fold speed up in training

Developed AI ensemble for realtime gravitational wave detection

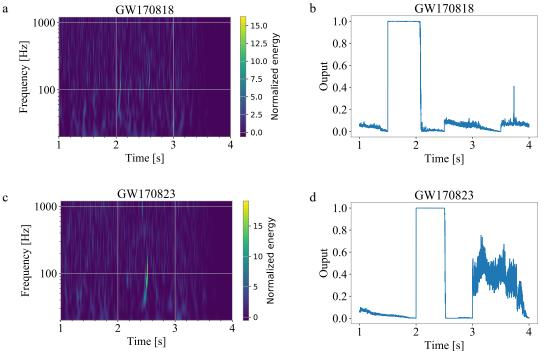
Arconne National Laboratory is a IERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

0.0 0.00

0.25

0.50 0.75

Time (s)

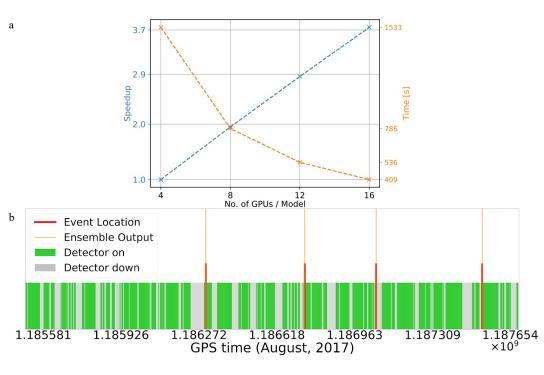

1.00

HOW

4 AI models processing advanced LIGO data in tandem

Each model processes data faster _c than real time

Target: identify real events while reducing # of misclassifications



HOW

Use AI ensemble to process one month of advanced LIGO data

Quantify sensitivity, inference speed and scalability

Distribute inference over the entire Hardware-Accelerated Learning (HAL) cluster at NCSA [IBMPower9 system with 64 NVIDIA V100 GPUs]

Establish reproducibility, scalability and performance of results

Make AI ensemble and postprocessing pipeline open source and containerized at the Data and Learning Hub for Science (DLHub)

DLHub

Data and Learning Hub for Science

A simple way to find, share, publish, and run machine learning models and discover training data for science

Documentation

Read the Docs	Examples	Python SDK	CLI	
---------------	----------	------------	-----	--

DLHub Models

Browse Models

Papers and Presentations

REALLY?

Open source + containerized is great

Can we do better than that?

DLHub

Data and Learning Hub for Science

A simple way to find, share, publish, and run machine learning models and discover training data for science

Documentation

Read the Docs	Examples	Python SDK	CLI	
---------------	----------	------------	-----	--

DLHub Models

Browse Models

Papers and Presentations

REALLY?

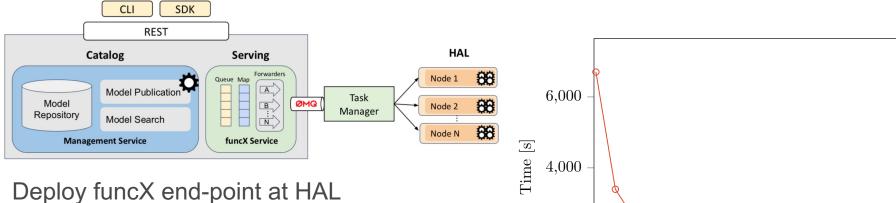
PRESENT – STATIC APPROACH

DLHub+funcX: reproducible, scalable and accelerated AIdiscovery at the edge

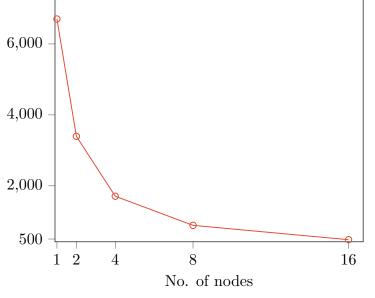
Reduce time-to-insight with HPC platforms Optimal distributed training

Already used at scale!

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



Deploy Al models in DLHub



GRAVITATIONAL WAVE ASTRONOMY funcX + DLHub

Call AI models hosted at DLHub

Optimal scalability, reproducibility established

ATIONAL LABORATORY

PRESENT – STATIC APPROACH

DLHub+funcX: reproducible, scalable and accelerated AIdiscovery at the edge

Reduce time-to-insight with HPC platforms Optimal distributed training -@`@--@-Q

Deploy Al models in DLHub

Already used at scale!

RERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. TensorRT further reduced the analysis to just 2 minutes!

BEHIND THE PAPER

From Disruption to Sustained Innovation: Artificial Intelligence for Gravitational Wave Astrophysics

Eliu Huerta Lead for Translational AI, Argonne National Laboratory

ది Follow

Published Jul 06, 2021

Extreme scale computing

Edge computing

Article | Published: 05 July 2021

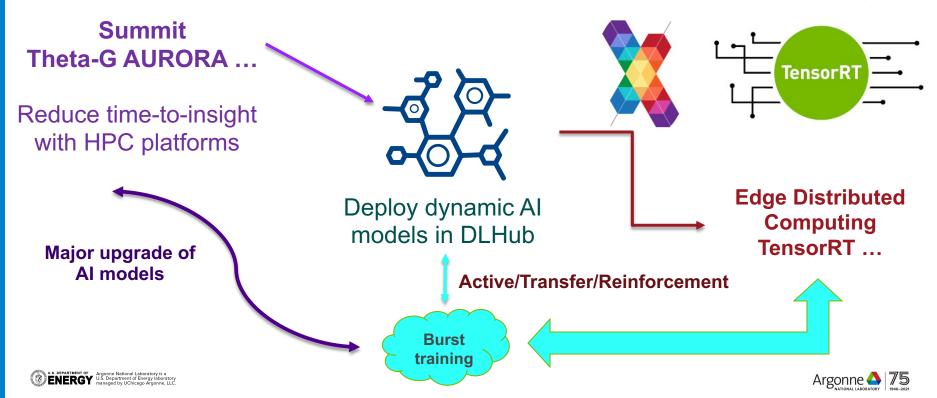
nature > nature astronomy > articles > article

Accelerated, scalable and reproducible AIdriven gravitational wave detection

Open source,

accelerated,

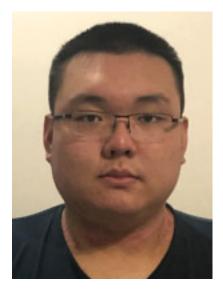
reproducible Al


E. A. Huerta ⊠, Asad Khan, Xiaobo Huang, Minyang Tian, Maksim Levental, Ryan Chard, Wei Wei, Maeve Heflin, Daniel S. Katz, Volodymyr Kindratenko, Dawei Mu, Ben Blaiszik & Ian Foster

Nature Astronomy (2021)Cite this article297Accesses191AltmetricMetrics

DYNAMIC AI

DLHub+funcX: reproducible, scalable and accelerated AIdiscovery at the edge


CROSS-POLLINATION OF EXPERTISE

Wei Wei Goldman Sachs Associate

Minyang Tian ByteDance Al Lab 2021 Summer Intern

Al-ready datasets

Innovative computing

FAIR, interpretable, physics-inspired, accelerated AI models

Data fusion & new modes of data-driven discovery & smart cyberinfrastructure

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ACKNOWLEDGEMENTS

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725

We acknowledge support from NSF OAC-1931561, OAC-1934757, OAC-2004894 and DLHub: Argonne LDRD Project

We acknowledge support from NVIDIA and IBM

Argonne Argonne 1946-2021