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Research Motivation
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Problems to tackle
• Which potential root causes affect the 

quality measurements in the MMP? 
• How those root causes lead to the 

variation of the quality measurements? 

Potential 
root causes 𝐮! 𝐮" 𝐮#. . . . . . . . . . 

Multistage: 
• Error propagation
Data-rich: 
• Mixed profiles
• Redundant information in 𝐮"’s

DepositionWafer
Substrate Lithography Etching Polish Polish Deposition Final Product 

Etching profileOverlay fieldFilm Thickness Film Thickness



Process and Data Characteristics
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Cascading effects 

• Potential causes may affect current and later stages 

Sparsity of actual root causes

• Not all potential causes affect the quality simultaneously

Smoothness of quality measurements

• Profiles of smooth curves and images 

Few underlying quality issues

• Actual root causes link to few latent quality issues and 

thus cause limited variation patterns of profiles



Common Existing Approaches
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Separate models [e.g., 5,6]
Risk missing key features.

Two-step approach [e.g., 7]
May not reach consensus on the actual root causes.

Stream-of-variation [1,2]
“State vectors” are not well defined. 

[1] Shi, J. (2006). Stream of variation modeling and analysis for multistage manufacturing processes. CRC press.
[2] Shi, J., & Zhou, S. (2009). Quality control and improvement for multistage systems: A survey. IISE Transactions, 41(9), 744-753.
[3] Ju, F., Li, J., Xiao, G., Huang, N., & Biller, S. (2013). A quality flow model in battery manufacturing systems for electric vehicles. IEEE Transactions on Automation Science and Engineering, 11(1), 230-244.
[4] Ju, F., Li, J., Xiao, G., & Arinez, J. (2013). Quality flow model in automotive paint shops. International Journal of Production Research, 51(21), 6470-6483.
[5] Lin, T. H., Hung, M. H., Lin, R. C., & Cheng, F. T. (2006, May). A virtual metrology scheme for predicting CVD thickness in semiconductor manufacturing. In Proceedings 2006 IEEE International Conference on 
Robotics and Automation, 2006. ICRA 2006. (pp. 1054-1059). IEEE.
[6] Ma, X., Zhao, Q., Zhang, H., Wang, Z., & Arce, G. R. (2018). Model-driven convolution neural network for inverse lithography. Optics express, 26(25), 32565-32584.
[7] Moyne, J., & Iskandar, J. (2017). Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing. Processes, 5(3), 39.

Quality Flow Model [3,4]
Not suitable for data-rich MMPs. 
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Research Objective

Objective:
To develop a holistic framework for the MMP in data rich environment

Unique contributions: 

• Analyze heterogeneous quality measures and potential root causes 

simultaneously under a unified framework. 

• Develop a solution procedure based on distributed optimization 

Which are the actual 
root causes that affect 
the process quality? 

How these root causes 
affect the quality 
measurements?

How to associate the 
quality measures with 
several key variation 
patterns? 



Linearity assumption and cascading effect

𝐘# = 𝐁#$ +&
"%&

#

&
'%&

(!

𝑢"'𝐁"',# + 𝐄#, 𝑘 = 1,… , 𝐾.

Proposed Process Model 
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ℬ$ ={𝐁#$: 𝑘 = 1,… , 𝐾} Offset matrices
ℬ ={𝐁"',#: 𝑖 = 1,… , 𝑘; 𝑘 = 1,… , 𝐾; 𝑗 = 1… 𝐽"} Effect matrices between 𝐘# and 𝑢"'’s

Stage 1 Stage KStage 2

𝐘& 𝐘* 𝐘+

𝐮& 𝐮* 𝐮+
Multiple potential root causes (𝐮")

𝐮" = 𝑢"&, … , 𝑢"', … , 𝑢"(!
,

Quality measurements of multiple 
functional signals or images (𝐘#)
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Problem Formulation and Expected Outcomes

By solving ℬ,ℬ$, we can answer the three problems simultaneously

• Actual root causes: 

𝑖, 𝑗 : 𝐁"',# = 𝐎, 𝑘 = 𝑖, … , 𝐾

• Subspace of all variation patterns for stage 𝑘: 

span 𝐁"',#: 𝑖 = 1,… , 𝑘, 𝑗 = 1,… , 𝑛"

• How root causes 𝑢"' affect the quality measurements 𝐘#: 

Individual effect matrix 𝐁"',#

Linearity assumption and cascading effect

𝐘# = 𝐁#$ +&
"%&

#

&
'%&

-!

𝑢"'𝐁"',# + 𝐄#, 𝑘 = 1,… , 𝐾.
Offset mat’s ℬ! ={𝐁"!}
Effect mat’s ℬ ={𝐁#$,"}



Problem Formulation: Magnitude of Prediction Error
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Magnitude of the prediction error:

ℒ ℬ,ℬ$ = &
.%&

/

&
#%&

+

𝐘#
. − 𝐁#$ −&

"%&

#

&
'%&

-!

𝑢"'
. 𝐁"',#

0

*

min
ℬ,ℬ"

ℒ ℬ,ℬ$ + 𝜆&𝑝& ℬ,ℬ$ + 𝜆*𝑝* ℬ,ℬ$ + 𝜆2𝑝2 ℬ + 𝜆3𝑝3 ℬ Offset mat’s ℬ! ={𝐁"!}
Effect mat’s ℬ ={𝐁#$,"}

For good prediction of the quality 
measurements using potential causes



Problem Formulation: Smoothness
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𝑝& ℬ,ℬ$ =&
#∈𝒮

&
6%$

6#
𝐃7𝐁#$ 𝑚, : *

* +&
"%&

#
&

'%&

-!
&

6%&

6#
𝐃7𝐁"',# 𝑚, : *

*

𝑝* ℬ,ℬ$ =&
#∈ℐ

𝐃9 vec 𝐁#$ *
* +&

"%&

#
&

'%&

-!
𝐃9 vec 𝐁"',# *

*

Quality measure as 
functional curves

min
ℬ,ℬ"

ℒ ℬ,ℬ$ + 𝜆&𝑝& ℬ,ℬ$ + 𝜆*𝑝* ℬ,ℬ$ + 𝜆2𝑝2 ℬ + 𝜆3𝑝3 ℬ Offset mat’s ℬ! ={𝐁"!}
Effect mat’s ℬ ={𝐁#$,"}

Quality measure 
as images

[1] Buckley, M. J. (1994). Fast computation of a discretized thin-plate smoothing spline for image data. Biometrika, 81(2), 247-258.

𝐃$, 𝐃%: discretized versions of ⁄𝜕" 𝜕𝑥" and ⁄𝜕" 𝜕𝑥" + ⁄2𝜕" 𝜕𝑥𝜕𝑦 + ⁄𝜕" 𝜕𝑦" [1].  



Problem Formulation: Sparsity of Potential Root Causes
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Select the potential root causes

min
ℬ,ℬ"

ℒ ℬ,ℬ$ + 𝜆&𝑝& ℬ,ℬ$ + 𝜆*𝑝* ℬ,ℬ$ + 𝜆2𝑝2 ℬ + 𝜆3𝑝3 ℬ

𝐁"',⋅ =
vec 𝐁"',"

⋮
vec 𝐁"',+

A long vector containing all elements in ℬ associated with 𝑢"'. 

𝑝2 ℬ =&
"%&

+
&

'%&

-!
𝐁"',⋅ *

Offset mat’s ℬ! ={𝐁"!}
Effect mat’s ℬ ={𝐁#$,"}



Problem Formulation: Few Latent Quality Issues
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Restrict the number of variation patterns of each stage’s quality measurement

min
ℬ,ℬ"

ℒ ℬ,ℬ$ + 𝜆&𝑝& ℬ,ℬ$ + 𝜆*𝑝* ℬ,ℬ$ + 𝜆2𝑝2 ℬ + 𝜆3𝑝3 ℬ

𝐁⋅⋅,# = vec 𝐁&&,# … vec 𝐁#-#,#

Each column is a variation pattern of stage 𝑘 output caused by a 𝑢"'. 

𝑝3 ℬ =&
#%&

+
𝐁⋅⋅,# ∗

Offset mat’s ℬ! ={𝐁"!}
Effect mat’s ℬ ={𝐁#$,"}



Problem Formulation: Summary

Convex formulation, but lots of parameters! 
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min
ℬ,ℬ"

ℒ ℬ,ℬ$ + 𝜆&𝑝& ℬ,ℬ$ + 𝜆*𝑝* ℬ,ℬ$ + 𝜆2𝑝2 ℬ + 𝜆3𝑝3 ℬ

&
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+
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#

&
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-!
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0

*
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#∈𝒮

&
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𝐃7𝐁#$ 𝑚, : *

* +&
"%&

#
&

'%&

-!
&

6%&

6#
𝐃7𝐁"',# 𝑚, : *

*

+&
#∈ℐ

𝐃9 vec 𝐁#$ *
* +&

"%&

#
&

'%&

-!
𝐃9 vec 𝐁"',# *

*

+&
"%&

+
&

'%&

-!
𝐁"',⋅ * +&#%&

+
𝐁⋅⋅,# ∗

Offset mat’s ℬ! ={𝐁"!}
Effect mat’s ℬ ={𝐁#$,"}



Solution Based on ADMM Consensus Algorithm (1)
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Analyze the problem:

• Summation of five terms.

• Each term has disjoint groups of coefficients.

• Each term consists of simple convex functions. 

Apply a parallel ADMM consensus algorithm [1] 

Key step: update groups of ℬ,ℬ$ in parallel. Need to calculate

proxCD ⋅ 𝐱 = argmin
𝐯

𝑓(𝐯) +
1
2𝜂

𝐱 − 𝐯 *

𝑓 − quadratic loss, ⋅ *, ⋅ ∗, 𝑝F ⋅ = 𝐃G ⋅ *
* and 𝑝9 ⋅ = 𝐃9 ⋅ *

*

[1] Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends in optimization, 1(3), 127-239.



Solution Based on ADMM Consensus Algorithm (2)
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Calculate proxCH$ ⋅ 𝐱 :
1. 𝐱∗ ← DCT(𝐱)
2. $𝑥#∗ ← 𝑥#∗/ 1 + 4𝜂 1 − cos #'(

) 𝜋
*

3. W𝐱 ← IDCT(𝐱∗)

Calculate proxCH% ⋅ 𝐓 :
1. 𝐓∗ ← DCT2(𝐓)
2. �̃�#$∗ ← 𝑡#$∗ / 1 + 4𝜂 2 − cos #'(

+ 𝜋 − cos $'(
, 𝜋

*

3. Z𝐓 ← IDCT2(Z𝐓∗)

We give the efficient algorithms for the prox operator of curve and image smoother. 

Computational Complexity
𝑂 𝑚* → 𝑂(𝑚 log𝑚)

Computational Complexity
𝑂 𝑚*𝑛* → 𝑂 𝑚𝑛 log𝑚 + log 𝑛



Overview of the ADMM Consensus Algorithm
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Local Computation
All For loops (2a) – (2d)
can be performed in parallel 
using prox operators

Initialize
4 replicates for ℬ
2 replicates for ℬ&

Global Aggregation
All elements in assignments
can be performed in parallel

Iterate Until Convergence



Simulation Study

A four-stage test-bed motivated by semiconductor manufacturing processes
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20 potential root causes per stage 

Mixed quality measures

Four Settings

• 3 or 6 actual root causes

• 2 or 5 quality variation patterns

𝐮2 𝐮3

Stage 1 Stage 3Stage 2

𝐘& 𝐘* 𝐘2

𝐮" = 𝑢"&, … , 𝑢",*$
𝐮*

Stage 4

𝐘3

𝐮&



Illustrating the Effect of Actual Root Causes (1)
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Effect of actual root causes 

from stage 1

𝑢!!

𝑢!"

𝑢!'

𝐘! 𝐘" 𝐘' 𝐘(

3 actual root causes

2 quality variation patterns

𝑢!!

𝑢!"

𝑢!'

𝐘! 𝐘" 𝐘' 𝐘(

True parameters of 𝐁)*,, Estimated parameters of 𝐁)*,,



Illustrating the Effect of Actual Root Causes (2)
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𝑢"!

𝑢""

𝑢"'

𝐘! 𝐘" 𝐘' 𝐘(

𝑢"!

𝑢""

𝑢"'

𝐘! 𝐘" 𝐘' 𝐘(

Effect of actual root causes 

from stage 2

3 actual root causes

2 quality variation patterns

True parameters of 𝐁)*,, Estimated parameters of 𝐁)*,,



Illustrating the Effect of Actual Root Causes (3)

19

𝑢'!

𝑢'"

𝑢''

𝐘! 𝐘" 𝐘' 𝐘(

𝑢'!

𝑢'"

𝑢''

𝐘! 𝐘" 𝐘' 𝐘(

Effect of actual root causes 

from stage 3

3 actual root causes

2 quality variation patterns

True parameters of 𝐁)*,, Estimated parameters of 𝐁)*,,



Illustrating the Effect of Actual Root Causes (4)
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𝑢(!

𝑢("

𝑢('

𝐘! 𝐘" 𝐘' 𝐘(

𝑢(!

𝑢("

𝑢('

𝐘! 𝐘" 𝐘' 𝐘(

Effect of actual root causes 

from stage 4

3 actual root causes

2 quality variation patterns

True parameters of 𝐁)*,, Estimated parameters of 𝐁)*,,



Summary of the Findings
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Correctly identified actual root causes

• Stage 1-3:
All actual root causes are identified.

• Stage 4:
No type I error (missing actual root
causes).
Small type II error (average false root
causes < 1.4%).

Correctly identified variation patterns

• With 2 variation patterns: 
The number of variation patterns is 
always correctly identified. 

• With 5 variation patterns: 
The numbers can be identified correctly if 
they are linearly independent. 



Summary

• A holistic modeling and root cause diagnostic framework for data-rich MMPs.
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ü Identify the actual root causes

ü Understand the root cause’s effect on profile measurements 

ü Identify the subspace of underlying quality variation patterns

Stage 1 Stage KStage 2

𝐘& 𝐘* 𝐘+

𝐮& 𝐮* 𝐮+Multiple 
potential root causes 𝐮"’s

Quality measurements of 
multi-signals or images 𝐘"’s

• First MMP analysis method based on distributed optimization.  

• Extendable to more types of data by adjusting loss and penalization terms. 
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Data
Science

Advanced
Manufacturing

Problems
Variation modeling and analysis
• Monitoring / Detection
• Diagnostics & Prognostics 
• Forecasting and prediction

Tools
• Machine Learning
• High-dimensional Stat
• Large Scale Optimization

Applications
Intelligent Manufacturing Systems
• Steel Rolling
• Semiconductor Manufacturing
• Additive Manufacturing
• Internet-of-Things
• Cyber-physical Systems

Algorithms and Solutions
• Accurate
• Efficient
• Scalable

Data
• High-speed
• Massive
• Heterogeneous
• Complex-structured

Interdisciplinary
research

https://web.asu.edu/andi-wang
mailto:Andi.wang@gatech.edu


Call for new PhD students
• Research Area

industrial data analysis, machine learning for engineering applications, 
smart manufacturing, and data-driven modeling for complex systems. 

• Requirements
• B.S. or M.S. in engineering or statistics
• Motivated for interdisciplinary research

Collaboration opportunities
Please contact me with data problems in engineering applications! 
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