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• Introduction to CCSI2 and CCSI Computational Toolset
• Overview of Framework for Optimization, Quantification of Uncertainty, and 

Surrogates (FOQUS) Software 
• Applications of FOQUS Software in Carbon Capture Modeling

– Stochastic Model Development
– Sequential Design of Experiment (SDoE) for Pilot Testing
– Techno-Economic Analysis and Optimization

• Summary and Conclusions

Presentation Outline
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CCSI Toolset
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• Open-source suite of computational tools and models designed to maximize 
learning and reduce risks associated with scaling up carbon capture 
technologies

• Developed through Carbon Capture Simulation Initiative (CCSI) program 
(2010–2017)

• Carbon Capture Simulation for Industry Impact (CCSI2) continues to enhance 
the toolset and apply it to novel CCS technologies in collaborations with 
national laboratories, industrial organizations, and academia

https://github.com/CCSI-Toolset/

https://github.com/CCSI-Toolset/


FOQUS at a Glance
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Advanced Process 
Simulators and Modeling 

Environments

Comprehensive Analysis 
of Process Systems

• Uncertainty Quantification 
• Simulation-Based and 

Mathematical Optimization
• Surrogate Modeling

• Sequential Design of 
Experiments

• Optimization Under 
Uncertainty

Multifunctional Modules
ü Ability to interface with:

- Advanced process simulators (Aspen Plus, gProms)
- Microsoft Excel spreadsheets
- Python and MATLAB-based models
- Models containing vector variables

Nodes: Contain Individual Models Edges: Transfer variables between nodes



Overview of FOQUS Capabilities
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Flowsheet
An interface to set up and integrate various models
- Python
- Pyomo
- Aspen Plus
- MATLAB
- Microsoft Excel 

Uncertainty Analysis
- Data Visualization
- Parameter Screening
- Sensitivity Analysis
- Stochastic Parameter Estimation 

through Bayesian Inference
- Response Surface Construction 

and Validation

Optimization
- Includes multiple derivative-free 

optimization solvers
- Flowsheet variables may be 

incorporated as decision variables 
and into expressions for objective 
function and constraints

Optimization under Uncertainty
- Integrates capabilities of 

optimization and uncertainty 
modules to solve stochastic 
optimization problems with 
discrete and continuous 
uncertain parameters

- Enables single-stage and two-
stage problem formulations

Surrogates
- Simplified representation of 

flowsheet models
- Surrogate modeling tools 

include:
- ALAMO
- ACOSSO
- BSS-ANOVA 

SDOE
- Sequential design of 

experiments
- Capabilities for space-

filling designs:
- Uniform 
- Non-uniform
- Input/Response

Comprehensive Analysis of Process Systems
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Capabilities to be discussed further in forthcoming case studies



CCSI Model of Aqueous MEA System Implemented in 
Aspen Plus
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Figure adapted from Morgan et al., Appl. Energy, 2020, 262, 114533  

Model Features
Model Scale: ~ 0.5 MWe, baseline CO2 capture of ~ 10 tpd 

Property Method: ELECNRTL

Absorber and stripper modeled as rate-based columns 
with liquid-phase reactions with equilibrium chemistry:

2𝑀𝐸𝐴 + 𝐶𝑂! ↔ 𝑀𝐸𝐴𝐻" + 𝑀𝐸𝐴𝐶𝑂𝑂#

𝑀𝐸𝐴 + 𝐶𝑂! + 𝐻!𝑂 ↔ 𝑀𝐸𝐴𝐻" + 𝐻𝐶𝑂$#

Fortran User Subroutines:
• Liquid Properties (Viscosity, Molar Volume, Surface 

Tension, Diffusivity)
• Reaction Kinetics
• Mass Transfer
• Interfacial Area
• Liquid Holdup

Parameters Represented by Distributions:
• Property Models – Viscosity, Density, Surface Tension
• Thermodynamic Framework
• Mass Transfer and Interfacial Area



Bayesian Inference
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• Bayesian inference provides a framework for updating beliefs of model parameters characterized by 
epistemic uncertainty in light of collection of new data

𝜋 𝜃 𝑍 ∝ 𝑃 𝜃 ∗ 𝐿 𝑍 𝜃
Posterior Prior Likelihood

Typical Likelihood Function:

𝑳 |𝒁 𝜽 = 𝒆𝒙𝒑 −𝟎. 𝟓-
𝒊"𝟏

𝑴
𝑭∗ 𝒙𝒊,𝜽 − 𝒁(𝒙𝒊)

𝟐

𝑴𝝈𝒊𝟐

Representation of Prior and 
Posterior Distributions 
(reduction in uncertainty 
through data collection): 

Problem Solving Environment for Uncertainty 
Analysis and Design Exploration
• Software package, developed and maintained by 

PNNL, integrated into Uncertainty module in 
FOQUS



Objectives for Pilot Testing
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• Develop systematic approach to conducting pilot plant testing regardless of 
scale, process configuration, technology type, etc.

• Ensure right data are collected
• Maximize value of data collected
• Design of Experiments (DoE) is a powerful tool to accelerate learning by 

targeting optimally useful input combinations to match experiment goals
• Sequential DoE (SDoE) allows for incorporation of information from an 

experiment as it is being conducted by updating input selection criteria based 
on new information



Sequential Design of Experiments (SDoE)
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• SDoE, coupled with detailed process models, can maximize knowledge gained from 
budget- and schedule-limited pilot testing by optimizing resource allocation

• Reduction of model uncertainty leads to refined understanding of processes and, 
ultimately, reduction of technical risk associated with scale-up

Figure adapted from Morgan et al., GHGT-15 Proceedings, 2021, https://ssrn.com/abstract=3811695

https://ssrn.com/abstract=3811695


Utility Functions for SDoE
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• Space-filling designs
– Minimax: Ensure all points in the candidate set are in close proximity to a 

point in the design
– Maximin: Ensure all points in the chosen design are not too close 

together
• Various classes of uncertainty-based designs

– Minimize variance of parameter estimations
– Minimize variance of model predictions

• G-optimality: Minimizing the maximum output predicted variance in the design space



Applications of SDoE to Pilot-Scale Testing
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National Carbon Capture Center (NCCC)

0.5 MWe test facility
Wilsonville, Alabama

Collaborated with CCSI2 on aqueous MEA 
test campaigns in 2014 and 2017

Both test campaigns used CCSI aqueous MEA model:

https://github.com/CCSI-Toolset/MEA_ssm

Technology Centre Mongstad (TCM)

12 MWe test facility
Mongstad, Norway

Collaborated with CCSI2 on aqueous 
MEA test campaign in 2018

Upcoming test campaigns for novel 
CO2 capture technologies in 
collaboration with commercial 
developers

https://github.com/CCSI-Toolset/MEA_ssm


Phases of Test Campaign at TCM

13

Phase 1
Use space-filling design for evaluating quality of prediction of existing model

Phase 2
Determine input combinations for testing based on economic objective function

Phase 3
Determine input combinations in order to minimize the maximum model prediction 

variance in the design space

Phases 4–5
Minimize solvent regeneration energy requirement

(Note: absorber packing height reduced and rich solvent bypass configuration used for 
this part of the test campaign)



SDoE Results (TCM Campaign)
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Effect of two iterations of SDoE process on 
distributions of interfacial area and mass transfer 
parameters

Through data collection, feasible ranges of 
mass transfer and interfacial parameters are 
reduced by refining their distributions

Effect of Bayesian inference on capture prediction 
confidence interval for individual combinations in 
candidate sets (candidate set includes variation in flue 
gas flowrate, CO2 capture percentage, lean solvent 
CO2 loading, and flue gas CO2 concentration) 

Average reduction of ~ 
58% in the uncertainty 
of CO2 capture 
percentage predicted by 
the model due to 
refinement of mass 
transfer and interfacial 
area parameters

Figures adapted from Morgan et al., GHGT-15 Proceedings, 2021, 
https://ssrn.com/abstract=3811695

https://ssrn.com/abstract=3811695


Modeling of Second-Generation Solvent System
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• EEMPA Solvent System

– Latest in low-aqueous CO2-binding organic liquid (CO2BOL) class of solvents 
developed at Pacific Northwest National Laboratory

– Reduction in regeneration energy (~40% in comparison to aqueous MEA) and 
temperature

• CCSI2 has developed a methodology in FOQUS for economic-based optimization 
of supercritical PC power plant with CO2 capture (scale: 650 MWe)
– EEMPA chosen as solvent system for initial implementation of methodology 
– Ongoing work to extend methodology to a natural gas combined cycle plant

For further reading on EEMPA solvent system:

Jiang et al., IJGCC, 2021, 106, 103279



Modeling of Supercritical PC Plant
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Aspen Model Node Python Node

Economic calculations based on:
– Li et al. (2016) [1] paper for capital cost of 

CO2 capture unit 
– NETL baseline report [2] for all other capital 

and operating costs (Case B12B)

Variable 
Transfer

References:
[1] Li et al. (2016), Applied Energy, 165: 648-659

[2] Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal 
(PC) and Natural Gas to Electricity Revision 3, DOE/NETL-2015/1723  



Optimization Problem Implementation
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min
!"
𝑓(&𝑥)

s.t.
&𝑥# ≤ &𝑥 ≤ &𝑥$
ℎ &𝑥 = 0
𝑔 &𝑥 ≤ 0

Variables included in 3𝑥

Variable Initial 
Value

Minimum Maximum

Absorber Packing Height (ft) 71.0 40.0 80.0

Absorber Diameter (ft) 48.0 30.0 50.0

Stripper Packing Height (ft) 40.0 30.0 60.0

Stripper Diameter (ft) 23.0 10.0 40.0

Lean Solvent Loading 
(mol CO2/mol DIAM)

0.045 0 1

Rich Solvent Temperature – Exiting 
Lean Rich Exchanger (°F) 

194.0 100.0 200.0

𝑓 3𝑥 is Cost of CO2 Capture (COC) in $/tonne CO2

ℎ 3𝑥 denotes constraints directly included in Aspen model

𝑔 3𝑥 is used to constrain maximum column flooding to 80%



Optimization Results
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Range Optimal 
Value

Absorber Packing Height (ft) [40-80] 40.0

Absorber Diameter (ft) [30-50] 48.2

Stripper Packing Height (ft) [30-60] 30.1

Stripper Diameter (ft) [10-40] 23.0

Lean Solvent Loading 
(mol CO2/ mol DIAM)

[0-1] 0.069

Rich Solvent Temperature –
Exiting Lean Rich Exchanger (°F)

[100-200] 183.1

CO2 Capture Cost ($/tonne CO2) 51.3

Cost for supercritical PC plant with CANSOLV capture unit (NETL baseline case B12B): $58.2/tonne CO2



Economic Analysis – Cost of Electricity Comparison
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𝑪𝒐𝒔𝒕 𝒐𝒇 𝑪𝒂𝒑𝒕𝒖𝒓𝒆 =
𝑪𝑶𝑬 − 𝑪𝑶𝑬𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝑪𝑶𝟐 𝒄𝒂𝒑𝒕𝒖𝒓𝒆
𝒎𝒂𝒔𝒔 𝒐𝒇 𝑪𝑶𝟐 𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅

66.37

14.64

14.29

29.37

Cost of Electricity - EEMPA

72.2

15.4

14.7

30.9

Cost of Electricity - CANSOLV (B12B)

39

9.6

9.1

24.6

Cost of Electricity - No Capture (B12A)

Total = $124.66/MW-hr Total = $133.2/MW-hr Total = $82.3/MW-hr 



Sensitivity Study – Effect of Contingency Costs for CO2
Removal Unit
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Process Contingency: Accounts for uncertainty in capital cost estimates due to process 
performance uncertainty; generally dependent on development status of technology
Project Contingency: Assumed to be  ~18% of the sum of bare-erected cost + EPC fees + process contingency 
[Consistent with Case B12B in baseline report]

• Due to relatively low maturity of 
EEMPA system technology, it is 
reasonable to assume higher 
percentage of process contingency in 
total planned cost for capture unit 

• COC exceeds that of baseline B12B if 
percent of process contingency for 
EEMPA system is assumed to be 
higher than 30%45
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11.82% process 
contingency in B12B

Capture cost of $58.2/tonne CO2 for CANSOLV system



Summary and Conclusions
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• CCSI2 program aims to accelerate the scale-up and commercial deployment 
of carbon capture technologies through efficient implementation of available 
computational tools and models 

• FOQUS tool facilitates connection between process models of various 
platforms (e.g., Aspen Plus) and enables advanced modeling capabilities for 
applications in and beyond carbon capture and storage 

• SDoE capability has been demonstrated to be effective in refining, through 
uncertainty reduction, stochastic models through collection of pilot plant data
– Reduction of ~60% in prediction of CO2 capture percentage demonstrated 

for aqueous MEA in test campaigns at NCCC and TCM
• Optimization capability implemented at plant-scale for second-generation 

CO2 capture solvent system for economic comparison with established 
baseline



Further Information
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CCSI2 Additional Information

https://www.acceleratecarboncapture.org/

CCSI2 Toolset (FOQUS framework + individual models) Downloads

https://foqus.readthedocs.io/en/latest/

FOQUS Installation Instructions and Reference Manual

https://github.com/CCSI-Toolset

https://www.youtube.com/channel/UCBVjFnxrsWpNlcnDvh0_GzQ?app=desktop

FOQUS Video Tutorials

https://www.acceleratecarboncapture.org/
https://foqus.readthedocs.io/en/latest/
https://github.com/CCSI-Toolset
https://www.youtube.com/channel/UCBVjFnxrsWpNlcnDvh0_GzQ?app=desktop
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