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The intention of ML4I is to foster and illustrate the adoption of ML methods

for practical industrial outcomes. The forum will consist of a robust and

open dialog between industry, research institutions, vendors, and academia

to strengthen the technology transfer of ML methods to industrial needs.
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Copernicus, Keppler, Galileo,… 

1000+

Discovery based on observations.

Empirical Science
Described natural phenomena but 

lacked extensions beyond observation

1650+

Newton

Maxwell, Einstein, Friedmann

ሶ𝑎

𝑎

2

=
8𝜋𝐺𝜌

3
+
Λ𝑐2

3
−
𝑘𝑐2

𝑎2

ሷ𝑎

𝑎
= −

4𝜋𝐺

3
𝜌 +

3𝑝

𝑐2
+
Λ𝑐2

3

Friedmann's Cosmic equations built upon

Einstein’s Field Equations and generalizes

the expansion of the universe → physics-math

Theoretical constructs  
Mathematical framework allowed 

generalizations based on Laws

1940+

ENIaC

Navier Stokes … cannot be solved 

except for degenerate cases and 

very simple geometries → DNS, LES

Turing, Von Neumann, Moore’s Law

Numerical Solvers
Progress through Numerical 

(computational) solutions to 

complex problems*

2000+

• GPU’s

• SOC’s

• FPGA’s

• QC,…

4th Paradigm 
Large data

Large dimensions

Large Compute

New Methods -- ML

Have observations (data)

Needed new instruments

Needed theories for generalizations

Developed theory

Needed solvers for more complex 

problems 

Developed Numerical solvers

Needed better compute and better 

numerical methods for speed

Have new compute 

Developed new methods (data) 

Move to newer compute - QC





→



Adapted from: Connor Coley/Massachusetts Institute of Technology

LOOPED INTELLIGENCE
An autonomous chemistry laboratory runs experimental cycles intended to yield useful products molecules. In the cycle, 
artificial intelligence models the experiment and designs a product compound, robotic equipment runs the synthesis, and 
AI evaluates the output; researchers {and product designers} interpret the data and adjust experimental/design models or 
the goal definition as needed

Must have Large scale optimization



Algorithms:

Diagnostic

Prognostics

Test DBs

On-prem

Cloud

Service

• Calibrations

• Anomaly Quantifier

• Warning Systems

• Analytics

• RCA

• DV support

Pre-prod vehicles Launched Veh

DV and fixes

O
T
A

Data feed to tool
Same model/s in tool chain

Test data available to tool chain

O
T
A

Continuous testing until launch

Continuous learning post launch
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New

Sensing is 

expanding

𝜑 𝑢𝑖

𝜓 ො𝑢𝑖

Slow traffic → control actions ?

Old

⋮



keypoints

Feature Distance



AI  + Connectivity 

enhanced actions

Observed 

Behavior

AI augmented model 

based desired behavior

Connectivity with preview gives insight into stochastic events (traffic incidents). 

Combination of AI and Connectivity allows better management of uncertainty with improved Risk Reward trade-off.

Connectivity gives 

preview

⋮
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High dimensional, complex problem domains: Li-Ion batteries

D: diffusion coefficient

t+: transference coefficient

λ: thermal conductivity

j: pore wall flux

Q: source terms

Length scales:

X-direction: 100 μm

Y-direction: 5 cm

500-1 aspect ratio

Particle radius: 2-5 μm

Fick’s law of diffusion for spherical particles

conservation laws 

Kirchhoff’s and Ohm’s 

Butler-Volmer kinetics 

Fourier’s heat equation
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→ →

𝒚 = 𝑪𝒙 ሶ𝒙 = 𝝋 𝒙,𝒖, 𝒕 𝒖 = 𝜷 𝒙, 𝒙∗, 𝑱

Modern ControlNeural Control

𝓡𝑬𝒏𝒗 ≫ 𝓡𝑷𝒍𝒂𝒏𝒕

𝑮𝑴𝑪 ≫ 𝑮𝑵𝑪

Formal methods exist for MC, similar methods are being 

explored (are needed) for NNC 





Dynamically updating density estimates 

Updated with batch data , shifting distributions 

are very good indicators of evolving trends  

Initial deploy
Initial deploy

In use data from vehicle populations is used to 

update AD feature distributions

Monitor connected data to assess base model performance  and drifts in 

behavior and emerging trends

Shift AD threshold based 

on new distribution
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Updates to 

engineering team

• E (TP, FP)

• C (exists)

• E (TP, FP)

• C (exists)

• E (TP, FP)

• C (exists)

cause

𝐸 effect

𝐶 =

𝑐1
𝑐2
⋮
𝑐𝑛

Existence of other causal conditionals

DB: Development

DB: Dealers/Repairs

DB: Warranty

DB: Engineering/Quality
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• Diesel vehicles must trap soot in a filter→ DPF.

• Filters have finite trapping capacity and must be periodically cleaned or “regenerated”.

• Active regeneration involves a targeted burning of the trapped soot by intrusively

elevating and maintaining the exhaust gas temperature in the range of 600oC - 700oC.

• Regen Fuel Penalty (RFP) → f(Regen Freq, Rgen duration).

• Regenerations also incur NOx penalty.

• Traffic conditions and drive quality impact Regen Quality (RQ).

• Operating conditions during an active regen may become non-

optimal resulting in aborts.

– Frequent aborts increase regeneration frequency.

– Frequent regeneration is not optimal

PM (Soot)

Increasing Distance between Regens  →
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𝐽 = δ × 𝐽𝐻𝑒𝑎𝑡 + 𝐽𝐵𝑢𝑟𝑛 + 1 − 𝛿 ×𝓡 ×
𝑚𝑠𝑜𝑜𝑡 −𝑚𝑠𝑜𝑜𝑡

∗

𝑚𝑠𝑜𝑜𝑡_𝑚𝑎𝑥
+ 1 − 𝛿 × 𝐽𝐿𝑜𝑎𝑑 ×

𝑚𝑠𝑜𝑜𝑡 −𝑚𝑠𝑜𝑜𝑡
∗

𝑚𝑠𝑜𝑜𝑡_𝑚𝑎𝑥

Where:

ቊ
𝜹 = 𝟏, 𝒇𝒐𝒓,𝒎𝒔𝒐𝒐𝒕 ≥ 𝒎𝒔𝒐𝒐𝒕

∗

𝜹 = 𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝓡 𝑚𝑠𝑜𝑜𝑡 ,𝑚𝑠𝑜𝑜𝑡
∗ is the risk of not regenerating in current drive. 𝑚𝑠𝑜𝑜𝑡

∗ = 𝑓 𝒟 is the optimal soot load as a 

function o the drive 𝒟

Formulate as an optimization problem, SAE-2019-01-0316
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Vmph = 0

0<=Vmph<=20

20<Vmph<=40

40<Vmph<=60

242 miles 53 miles
181 miles1
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Distance between Regens

Actual drives: Dearborn            Canton on Mi-Ave, I-94 (1 trip)

I-94 US-12 US-12 

Soot Load (SL) at the start and end of each trip are shown

SLend > SLstart → loading cycle

SLend ≤ SLstart → Regen cycle.  (SLstart- SLend) → Soot load depleted

Fixed SL- Threshold based regen decisions can lead to short cycle regenerations 

resulting in increased regeneration frequency.



𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑡𝑟𝑎𝑓𝑓𝑖𝑐, 𝑑𝑟𝑖𝑣𝑒, …

success failure

retry

Fixed threshold trigger

Trigger regardless of 
expected drive quality

Conventional

No information forces threshold based 
(blind) decisions

Destination is known

Route with traffic known

Smart decisions (Gaming, Reinforcement)

Flexible Decision range

Regeneration trigger

DP
F 

So
ot

 L
oa

d

Forced Trigger

Trigger on threshold

Decision over a range of loads

Empty

Full

Increasing drive information, and decision flexibility

Connected and Smart

waitsuccess

Trigger on expected 
drive quality

Postpone decision to next 
most suitable drive



Backbone mAP @ 

IoU=0.50

Train time (s/iter) Test time (s/iter) Memory footprint

(GB)

# parameters Model size

ResNet50-FPN 0.99 0.1897 0.0467 (25FPS) 5.2 25 million 98 Mb

Mobilenet v2 0.79 0.1419 0.0269

(50FPS)

3.5 3.5 million 14 Mb

•

•



Perceive + Grasp + Assemble

Perceive + Approach+ Weld

Quality Inspection

▪ Robots can assemble with repeated precision

▪ Grasping and manipulation tasks remain challenging

▪ Current end effectors are under-actuated systems

▪ Current robotics problems deal with parts designed for 

human assembly.  
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Class B: Spray collapse, and transitionClass A: No collapse
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Models (PINNS and Surrogates)

NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations, to appear in arXiv

Data Need

Hybrid

Complexity

structure

Information 
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o CFD

o Thermo-fluids

o Aero-acoustics

o Rigid body dynamics

o Fluid Surface interactions

o Electromagnetics

o Non equilibrium – Kinetics

o Optics

o Structural Mechanics

o Materials/DFT

✓ Know  model structure

✓ Models are complex or computationally intensive

✓ Have data: experimental + Simulations

✓ Interpretability is essential

✓ Have data

✓ Have little or no knowledge of 

system behavior

✓ Interpretability is not critical

Neural O/P-DE’s

o Do not know RHS

ሶ𝑥 = 𝜑 𝑥, 𝑢, 𝑡 ? = 𝑓𝑀𝐿 𝑥, 𝑢, 𝑡, 𝜃
o Know some structure, can decouple

ሶ𝑥1 = 𝑓𝑀𝐿 𝑥1 … unknown … ML solution

ሶ𝑥2 = 𝜑2 𝑥1,𝑥2 … known

o Impute missing term

ሶ𝑥 = 𝜑 𝑥 + 𝑓𝑀𝐿 𝑥
o Stochastic Diff Eqs

𝑑𝑥 = 𝜇 𝑥, 𝜃, 𝑡 𝑑𝑡 + 𝜎 𝑥, 𝜃, 𝑡 𝑑𝑊𝑡

o SDE’s with jump discontinuity

Filippov: ሶ𝑥 = 𝑠𝑖𝑔𝑛(𝑡)
o Partial Diff Eq classes

1. NN architectures with activations as DiffEqs

2. NN architectures with some layers as ODE’s

3. ODE’s are defined with NN embeddings

4. Cost functions on ODE’s can be NNets

DEqNN

(u ⋅ ∇)𝑢 ≈ 𝜓 𝑢, 𝑝, 𝑡 ∇𝑢
𝜓

Use fundamental properties:
❑ Universal approximation property of NNets →given enough layers a NN model can

approximate any nonlinear function to within 𝜖→ good when nonlinearities are not

known apriori.

o 𝑦𝑀𝐿 𝑥 = 𝜎3 𝑊3 ∗ 𝜎2 𝑊2 ∗ 𝜎1 𝑊1𝑥 → eg. a 3 layer network, NN’s are

function approximations: ℛ𝑛 → ℛ𝑚

❑ Differential equations are compact ways of specifying arbitrary nonlinear transforms

by mathematically encoding prior structural assumptions → good when

nonlinearities are known apriori → ሶ𝑥 = 𝜑 𝑥, 𝑢, 𝑡
❖ Both are differentiable.



• Parts tested at production may not provide

adequate indications of impending in-use failure

• Defective parts in an assembly may go un-noticed

• Can we isolate these “problem child's” at birth ?

• Parts will degrade differently from usage

variations. Several populations with varying

degradation patterns will evolve.

• Faulty data is sparse.

• What is the scope of domain transfer between

problems?

• Do contrastive learning approaches work beyond

simple examples.

DATA ACQUISITION SIGNAL PROCESSING FEATURE EXTRACTION 

COMPARISON 

HEALTH ASSESSMENT PERFORMANCE PREDICTION VISULIZATION 

Control Strategy &  

Decision-Making
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Future rules are an uncertain
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No margin

Finite margins

Current State

Isolating failed parts is easy (most of ML based AD today), isolating functional parts with marginal 

deterioration and multiple dependencies … not so easy
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OpenAI disbands its robotics research team
VB July 2021

OpenAI has disbanded its robotics team after years of research into machines that can learn to
perform tasks like solving a Rubik’s Cube. Company cofounder Wojciech Zaremba quietly revealed on
a podcast hosted by startup Weights & Biases that OpenAI has shifted its focus to other domains,
where data is more readily available.
“So it turns out that we can make a gigantic progress whenever we have access to data”.

▪ Is data a good substitute for Physics ? Ignoring physics implies data must re-learn the system → Increased

data burden and all associated risks/errors.

▪ Extracting full domain representation from data alone requires a data set with very dense representation →

which usually translates to aggregation of a lot of data with sparse representations

▪ Data needing labeling (indirect sensing) are prone to noisy labels and impact learning !

▪ Purely data driven models need to learn continuously (hence need new data) until full coverage of domain,

but by then system/domain may have drifted !

▪ Tesla trains FSD with 1.5PB → building their own cluster 5760 A100 GPUs

▪ Need an “intelligent” Data and Learning policy.

Slightly misleading its not just data but LARGE DATA

https://venturebeat.com/2019/10/15/openai-teaches-a-robotic-hand-to-solve-a-rubiks-cube/
https://www.youtube.com/watch?v=429QC4Yl-mA&t=1153s


• Industrial and Engineering systems need guarantees and must be explainable!
• Design, Safety, Performance, … 

• ML methods, in general, lack formal approaches to understanding robustness, reliability, stability etc, but this may be changing ! 

• ML models rely on data, both data and models will have biases and can also drift → requires robustness checks at build as well as constant 
monitoring post deployment. →Past performance is no guarantee of future results !!

• Corner cases (more frequent than edge) vs Edge cases (did not think of these but Pr () >0 = unknown unknowns).
• One may inadvertently transition into regions where Pr(Edge) increases!

• ASIL-B → < 1 Failure in 107 hours of driving. At ~ 60mph that is 6x108 miles of driving = 0.6B miles of driving. At 150K Miles vehicle useful life this is
equivalent to data from 4000 cars driven to full useful life !!

• Currently Robustness implies massive amounts of testing, Simulation + Real life → different impacts depending on data class.

SENSOR DATA ALGO DEPLOY PERFORMANCE

Corner or edge ?



• Recently there has been growing interest in the CS-ML community to address causality (Yoshua Bengio, Hinton, LeCunn), Others, Pearl Marcus, etc
have been asking for this.

• Understanding causality is critical in engineering/manufacturing systems
• What is the root cause ? Formally (statistically) ... determine if a change in a given “treatment” leads to a change in some outcome → sensitivity analysis (engineering

speak)

• Humans can only manage short chain credit assignments, for multivariate influences … need compute

• Extracting causality from pixel space is more difficult

• Discover causal relations by analyzing statistical properties of purely observational data
• Expert knowledge: collection of facts and heuristics about the system

• Granger causality: causality in time series data

• Structural Equation Modeling (SEM): what factors determined the variable value

• Casual Bayesian Network (CBN): what the probability of the variable changes when changing factors

• Causal calculus (‘Pearl’)

• Causality in the action space – recovering from changes
• Distributions (system representations) will change due to environmental pressures and/or direct intervention

• Good causal models allow Causal induction from interventions .. Can we estimate the intervention

Extract the largest subgraph with target attribute

Remove weak 

connections
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