Application of Scientific Machine Learning (SciML) for Manufacturing Processes

Machine Learning for Industry Forum 2021 August 10, 2021

Vic Castillo, LLNL

LLNL Contributors: Yeping Hu, Delyan Kalchev, Ethan Ahlquist, Kevin Griffin, James Henrikson, Andrew Furmidge, Aaron Fisher, Nick Killingsworth, Bob Sherwood, Andrew Gillette, Yamen Mubarka, Eric Michaud, Justin Crum, Craig Gross, Eric Brugger

U.S. Dept. Of Energy Labs are helping the Manufacturing Industry Sector

Photo: courtesy of ArcelorMittal USA

 The U.S. manufacturing sector uses approximately 25% of the nation's energy.

Energy is a significant cost in manufacturing

Source: DOE's Advanced Manufacturing Office Multi-Year Program Plan for Fiscal Years 2017 through 2021

Lawrence Livermore National Laboratory

Machine Learning tools can help optimize your process

HPC4Mfg Program

We provide Scientific Machine Learning (SciML) tools *and* expertise to the manufacturing community

Vic Castillo castillo3@llnl.gov

Robin Miles miles7@llnl.gov

HPC4Mfg.llnl.gov

3

Manufacturing Industry Needs

- Rapid prediction of current or future process states.
- Integration of production data and simulation output.
- Informed decision-making for capital investment (sensors, simulation, experiments)

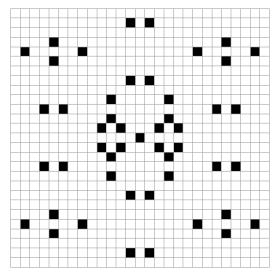
Photo: courtesy of Arconic Corporation

Photo: courtesy of Vitro Glass Corporation

How Machine Learning can help

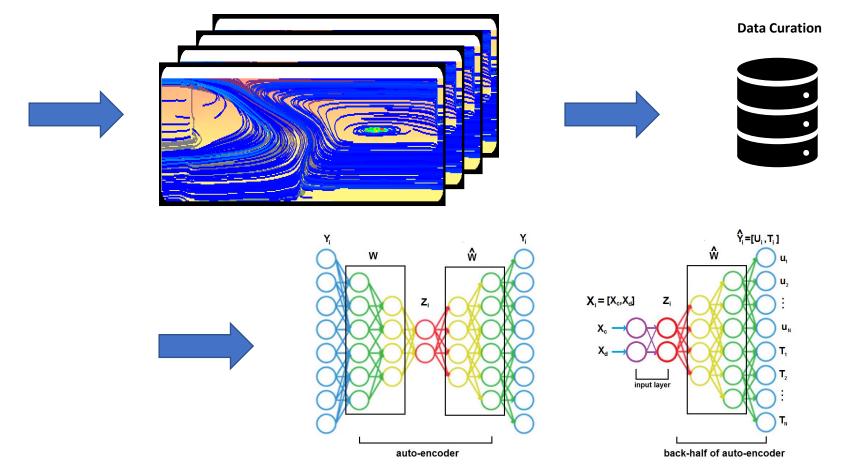
- Vision tools for quality control
- Predictive Maintenance
- Supply chain / Inventory optimization
- Process prediction and optimization
- Generative design
- Robotics

Scientific Simulation + ML (SciML) Workflow



Design of Experiment (Parameter Study)

Simulations



Example: Glass manufacturing

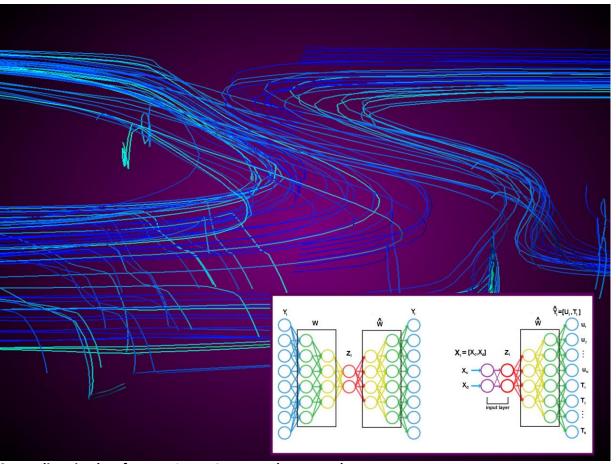
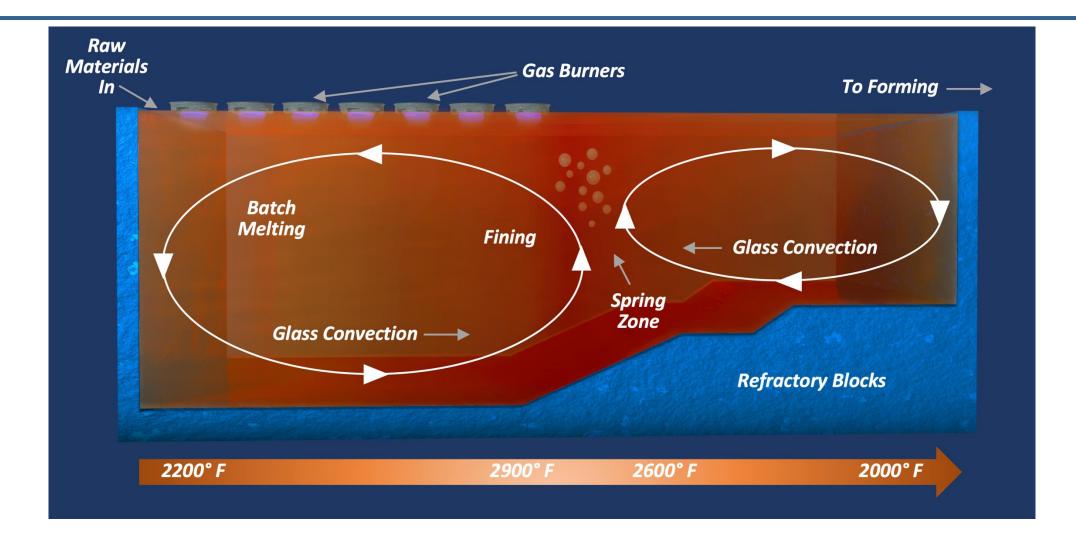


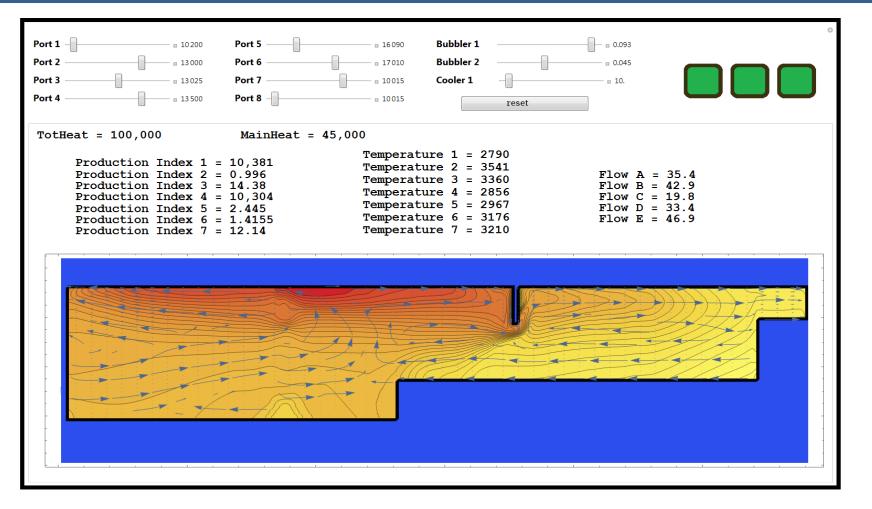
Photo: LLNL team at PPG Glass production facility

Streamlines in glass furnace. Inset: Autoencoder network

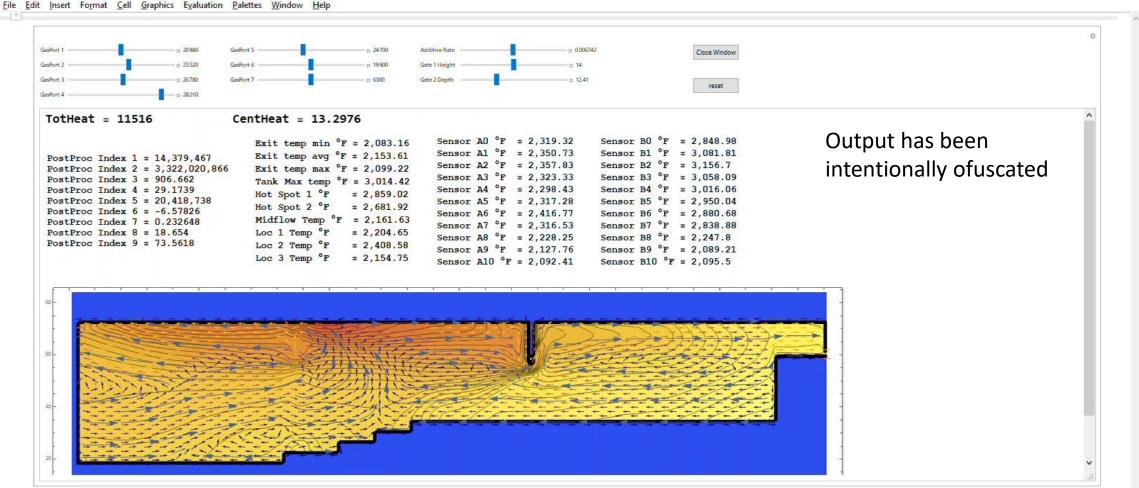
Issue: Molten Glass tank



Solution: Fast-running Emulator

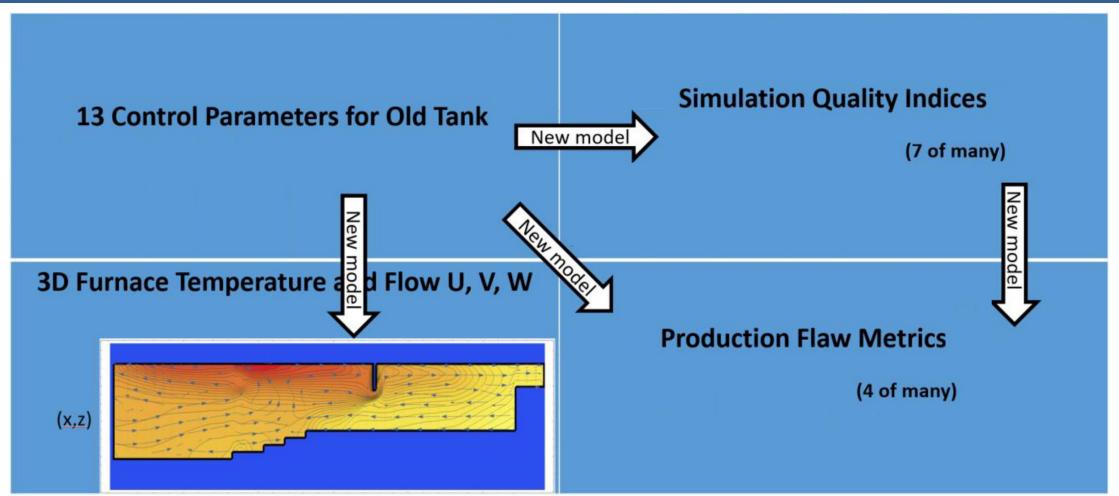


Solution: Fast-running Emulator



Edit Insert Format Cell Graphics Evaluation Palettes Window Help

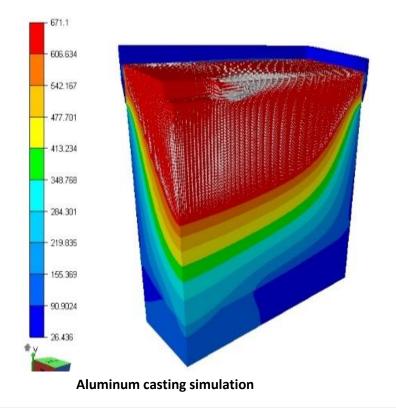
Simulation to Production data



Lawrence Livermore National Laboratory

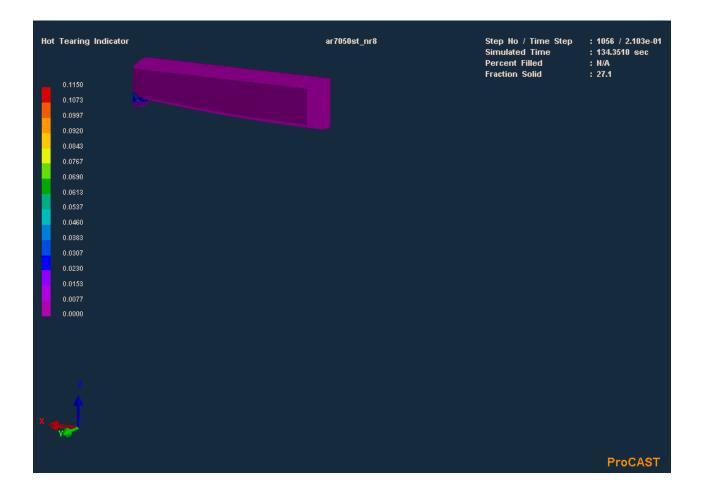
Example: Aluminum Casting

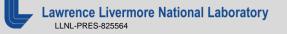
- Computer simulation using commercial off-the-shelf tools to analyze potential for cracking
- Pilot-scale production experiments



LLNL and ORNL team at Arconic R&D Center

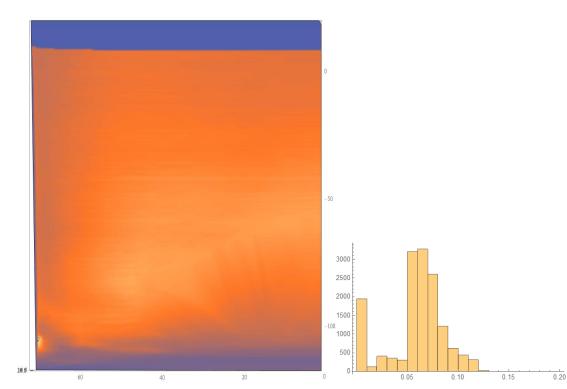
Aluminum Casting: COTS simulations developed (ProCAST)



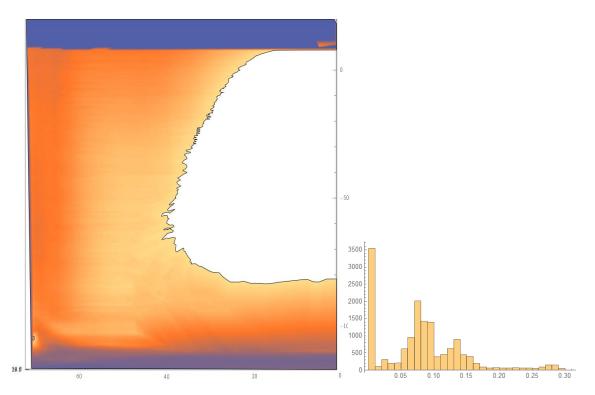


Aluminum Casting: Fast-running Surrogate Model

No Cracking



Cracking



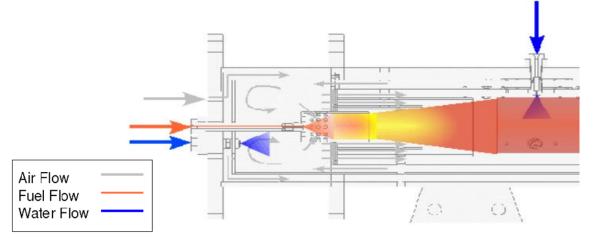
Lawrence Livermore National Laboratory

Innovating Startups:

VAST Power Systems

VAST Power Systems' Gas Turbines

- Backup Power Vital for Wind and Solar
- Boost Power ~60% and Efficiency ~24%
- NO_x Below Limits without Catalysts



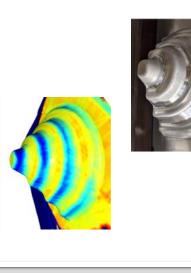
- Optimizing top 10 of >100 Design Parameters of VAST's proprietary combustor, with a chemistry set reduced from ~8,000 combustion reactions
- Design Parameters
 - Argonne NL HPC Modeled VAST Emissions
 - 1,000,000 Core Hours of Computational Fluid Dynamics (CFD)
 - Lawrence Livermore NL optimizing conditions using Reduced-order models
- DOE Phase II Low NOx VAST Turbine Design.
 Expect Best in Class with Hydrogen, Ammonia

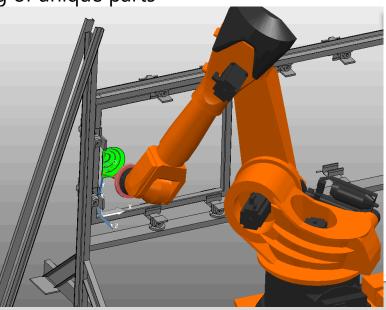
Innovating Startups: Machina Labs

AI & Robotics for on-demand Manufacturing

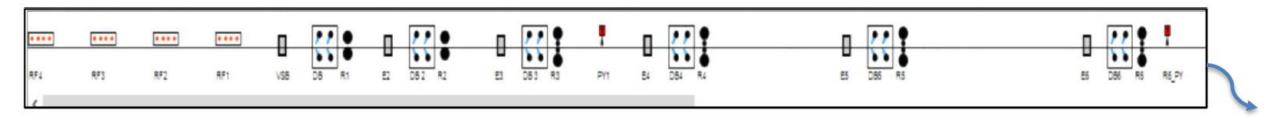
- Rapid deployment and scale-up
- Learning from data-driven models. Building towards autonomy for various geometries and alloys
- Enabling <u>agile</u> manufacturing of unique parts

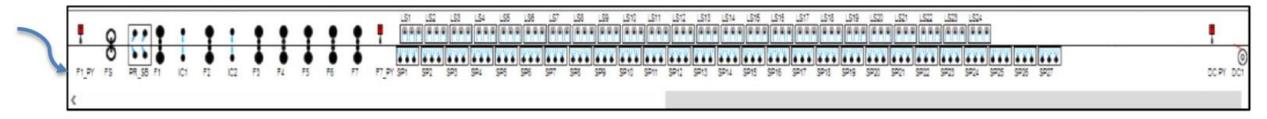
- Develop fast-running models for deformation of various materials.
- Develop reduced-order ML models for integration into autonomous path planning
- ML models will allow for better adaptive control

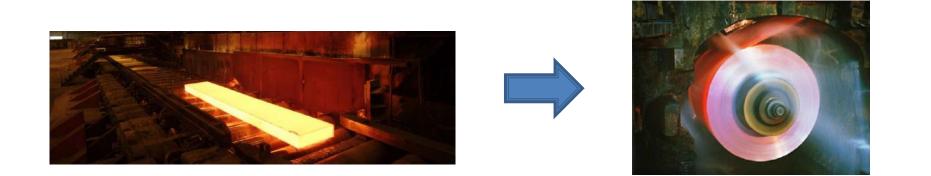




Sheet metal production (AK Steel / Cleveland Cliffs)

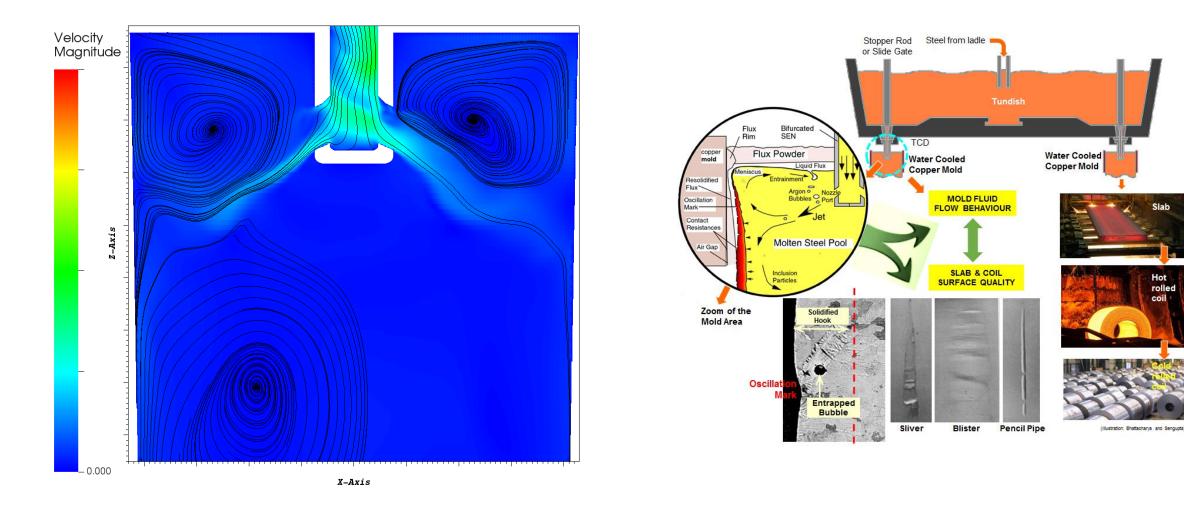




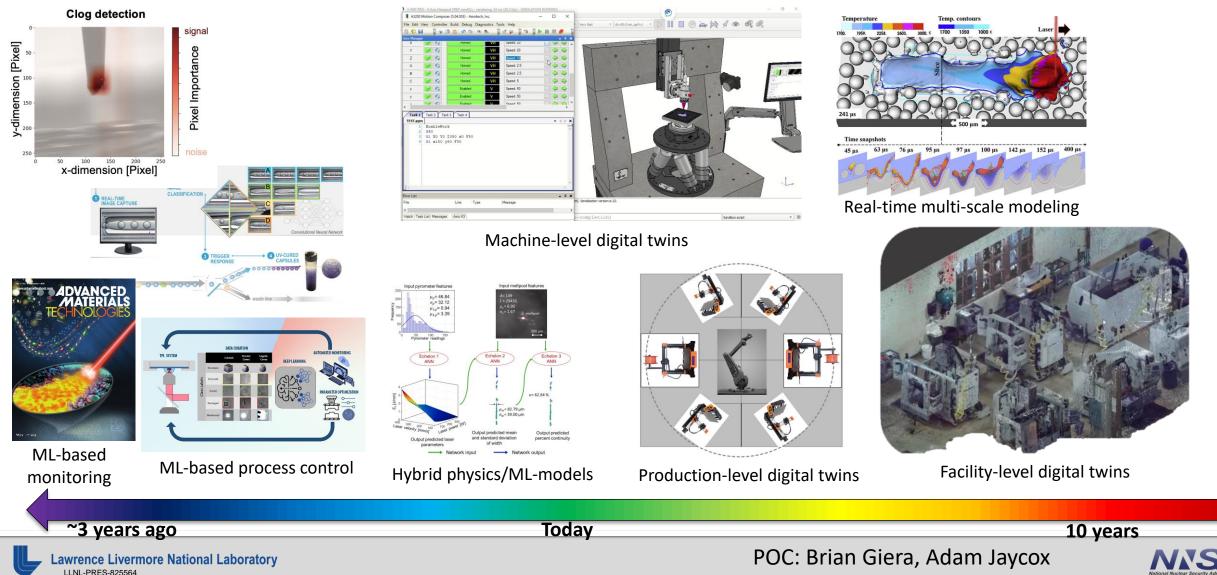


Simulation and prediction for Hot Strip steel production

Steel production (ArcelorMittal-USA / Cleveland Cliffs)



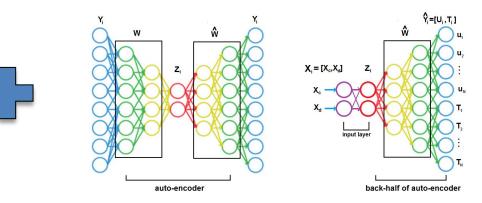
Technological Trajectory of Smart Advanced Manufacturing at LLNL



Scientific Machine Learning

Scientific Machine Learning (SciML)

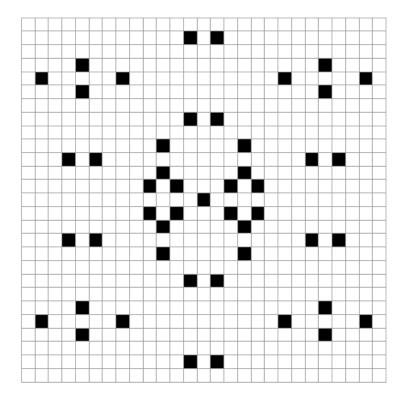
- Using physical simulation for data (training)
- ML for fast surrogate model (inference)
- Simulations can be expensive
 - Intelligent sampling
 - Speculative sampling



Concept – Design of Experiment

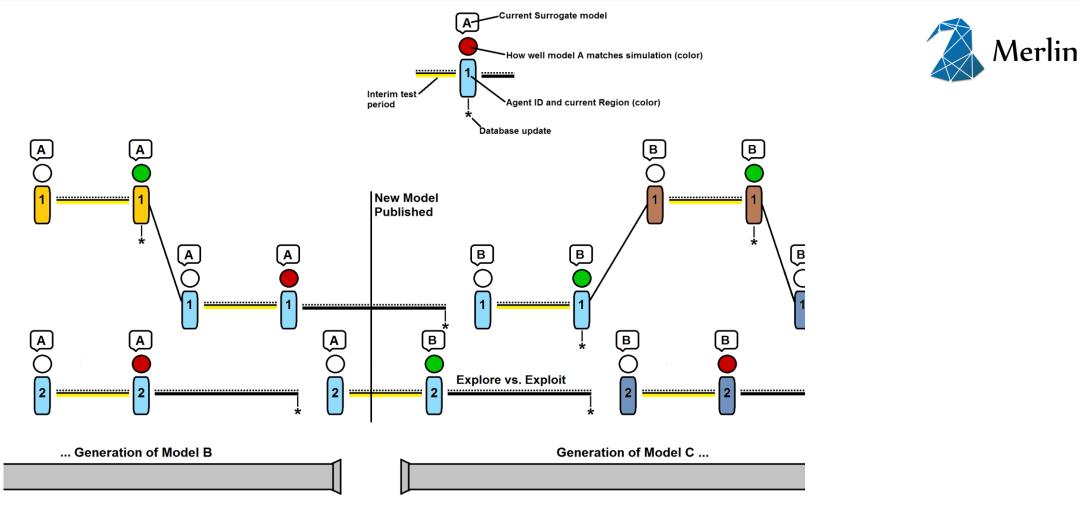
Design of Experiment

- Used to cover design space efficiently
- Sampling can be rotated to leverage existing simulations
- Care must be taken to avoid unsuitable control configurations.



2D mapping of 6 control variables: Box-Behnken sampling

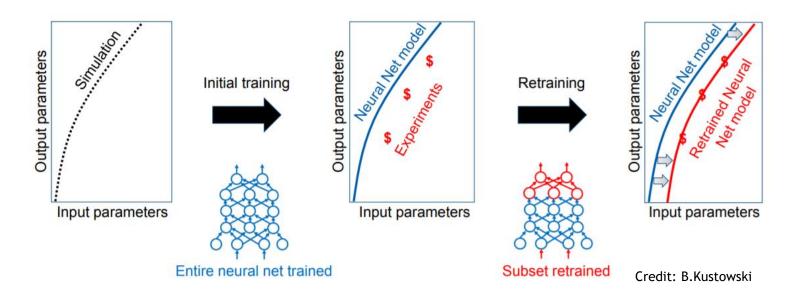
Concept – Active Learning

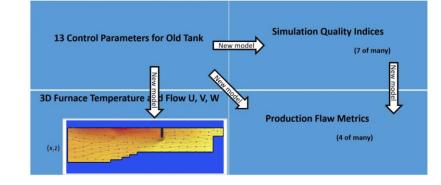


Concept – Transfer Learning

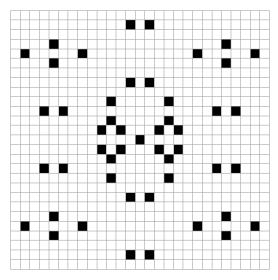
Transfer Learning

- Elevates surrogate with production data
- Combines sensor data with physics



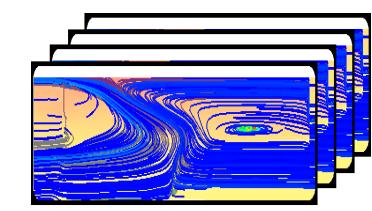


SciML Workflow



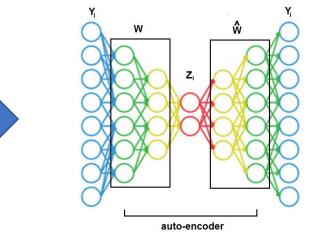
Design of Experiment (Parameter Study)

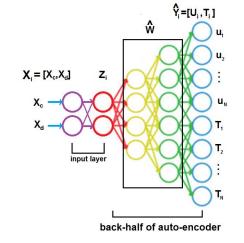
Simulations



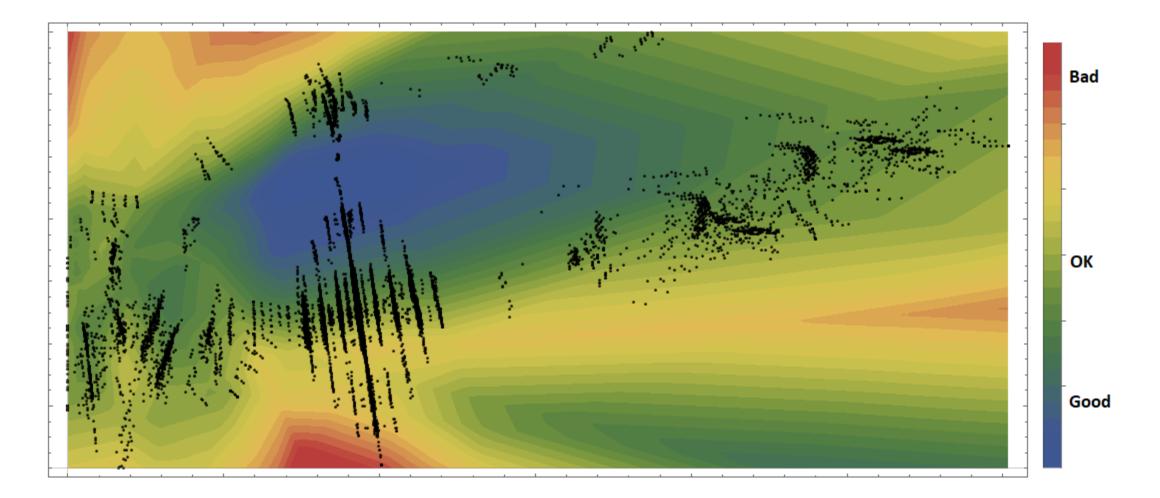
Data Curation

•





Typical Quality Map (X -> Z -> Y)



Lawrence Livermore National Laboratory

Key Points

- Neural Networks can learn and predict features of complex processes
- Simulations can provide training data
- **Physical experiments** and/or **production data** can be integrated into predictor model
- We have tools and resources

Impact: savings

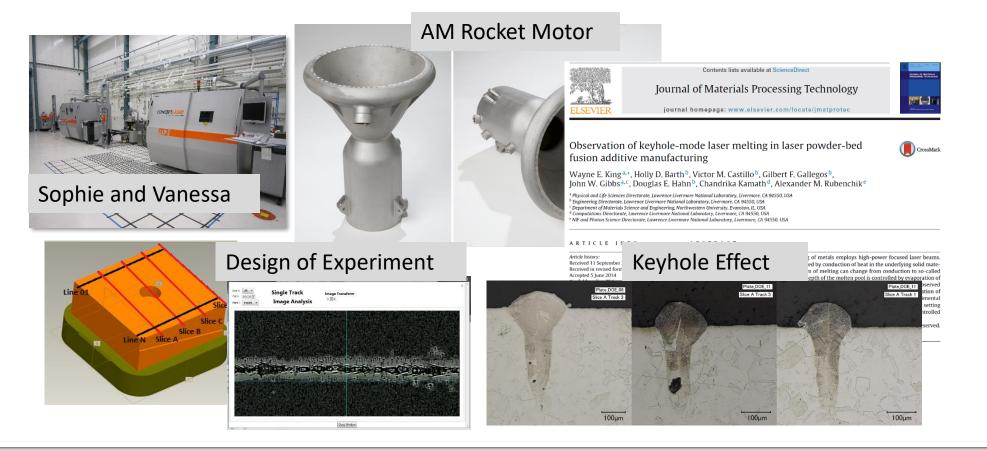
- Reduced-order model saves days, weeks, or months when process is out of control limits.
- Data integration makes most of sensor data and simulation investment.
- Uncertainty quantification helps to avoid costly investments that don't inform.

Project Impact: company/industry

Company	Savings	
PPG/Vitro (Glass)	Two weeks of production per year per furnace	GUARDIAN GLASS
U.S. Glass Industry	 Save ~2.5 TBTUs of energy Avoid 130,000 metric tons of CO₂ emissions 	
Arconic/Alcoa (Aluminum)	\$60M per year: if this technology can reduce the amount of reworked scrap by 50%	Alcoa ARCONIC Innovation, engineered.
U.S. Primary Casting	\$365M per year	VAST
VAST Power Systems	save ~1% of U.S. turbine fuel use	POWER SYSTEMS, IN Clean Power + Good Stewardship
AK Steel / Cleveland Cliffs	>\$1M per mill per year	K AKSteel
ArcelorMittal / Cleveland Cliffs (steel casting)	\$90M per year	ArcelorMit
U.S. Steel industry	3 PJ energy -> \$30.5M per year	Machina La

LLNL Metal Additive Manufacturing Data Curation, Distribution, and Documentation – Ethan Ahlquist, CED

DSSI Student Project: Curate, Publish, and Market metal additive manufacturing data from ACAMM LDRD Strategic Initiative.



How to work with us: https://hpc4energyinnovation.llnl.gov/

Vic Castillo, Ph.D. <u>https://www.linkedin.com/in/viccastillo/</u>

Lawrence Livermore National Laboratory LLNL-PRES-825564

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.