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Video Analytics and Object Detection

• Video Cameras are everywhere
Ø every cellphone, every vehicle, every human

Ø every building, every street, every highway …

• Object Detection:  a core perception for video 
analytics

http://www.firsttoyreviews.com/drones-
taking-the-future/

https://kjzz.org/content/1318066/phoenix-
red-light-and-speed-cameras-end-dec-31 2



•Video analytics is typically done in the Cloud
(1) Overwhelming Demands for Bandwidth
• Shipping all the videos to the Cloud is NOT scalable
• Netflix:  ~ 3GB/hr of HD video à 6.8 Mbps per stream (recom: 25 Mbps)
• London is estimated to have > 500,000 surveillance cameras

(2) Privacy concerns

• Video Analytics on the Edge 
•Distributed Learning & Inference on the Edge

Video Analytics: Device-Edge-Cloud Continuum
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Challenges of  Edge Video Analytics

Unlike Cloud, 

• Edge is resource limiting & little elasticity

• Edge is more exposed and more vulnerable to 

ØSystemic disruptions 
• contention induced delay, performance/accuracy degradation

• poor input data induced inference errors (e.g., poor lighting,  
foggy weather, convoluted objects, network jitter, …)

ØAdversarial disruptions (inference / training) 

• Security violation

• Privacy violation



Systemic Disruption in Edge System (1)

q Edge Client may be sensitive to contention/load 
surge at edge server and  WiFi bandwidth saturation. 
• Degradation Effects: 

Ø Server content induced random dropping of device-edge 
offloading operation   

Ø Bandwidth saturation induced blocking of device to edge 
offloading operations

• Solution Approach: Data Reduction Techniques 
Ø utility-preserving importance sampling

Ø utility-preserving region-of-interest based pruning 



Systemic Disruption in Edge System (2)

q Edge Client (e.g., end-devices) may not be capable of 
running a full precision model for video analytics.
Ø Multiple Reasons:
• Limited resources (compute/storage)
• Privacy concerns (sensing data are proprietary)

Ø Solution Approach: Model Reduction Techniques
• Model Reduction through gradient compression or NN pruning 
• to produce model of reduced sizes and complexity while 

maintaining good accuracy on-par to the high-fidelity model used in 
a centralized cloud setting  

• Distributed multi-fidelity collaborative DNN approach to learning 
and inference 



• Low rank filter-based model compression
• All the gradients are sorted and only remove x% at low rank and the rest is 

zeroed. Only gradients larger than a threshold are to be transmitted in full 
precision. The rest is zeroed.  x% is set as the control knob.

•Model Reduction by gradients compression 
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Systemic Disruption: Model Compression

no gradient 
compression

Global model trained with higher accuracy using local 
model compression than no compression

!"#$%&'()&$*+*+$
Code :https://github.com/git-disl/ESORICS20-CPL



Systemic Disruption: Multi-Fidelity Adaptation

•Model Reduction through Multi-Fidelity Adaptation
• Use the independent light weight BNN branch to focus on the simple tasks 

• Uses the full precision backbone to correct the error of the BNN branch 
through dynamic adaptation. 

Inference on edge server

Inference on edge client (end device) [13] Infocom2020



Systemic Disruption in Edge System (3)

•Object detection at edge may result in low throughput 
and high latency due to the mismatch between 
incoming video streaming rate (FPS) and detection 
processing rate (FPS)
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Throughput Problems in Edge Video Analytics

https://drive.google.com/file/d/13nOsA-9RMeYdeAG5nmTvuwzPESVTwmNa/view?usp=sharing

https://drive.google.com/file/d/13nOsA-9RMeYdeAG5nmTvuwzPESVTwmNa/view?usp=sharing


Systemic Disruption in Edge System (3)

•Object detection at edge may result in low throughput 
and high latency due to the mismatch between 
incoming video streaming rate (FPS) and detection 
processing rate (FPS)

ü Solution Approach: Parallel Detection Processing      
Leveraging AI hardware or fast network like 5G, 6G
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Parallel Model Detection Edge Service
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Fast Edge Video Analytics by Exploiting 
Multi-model Detection Parallelism

Single Edge node attached with multiple AI-hardware devices, 
each runs one detection model

Sequence 
Synchronizer

video frame 
sequence sync, 
time sync, ….

[1] IEEE CogMI 2021

1. Round Robin 
2. FCFS



Performance of a single NCS (mAP)

Model YOLOv3

mAP (%, No 
dropping)

ADL-Rundle-6 62.5

ETH-Sunnyday 86.9

mAP (%, 
Dropping)

ADL-Rundle-6 42.7

ETH-Sunnyday 66.1

Original Video (ETH-Sunnyday, 14 FPS)

With frame dropping (low precision, 14 FPS)With no frame dropping (slow, 2.6 FPS)

Impact on mAP



Experimental Results (round robin scheduler)

ADL-Rundle-6
Input Video FPS (𝜆): 30
#Frames: 525
Single NCS2: 𝜇=2.3 FPS
Offline mAP (%):   SSD300: 54.4, YOLOv3: 62.5

𝑛 = ⌈𝜆/𝜇⌉ ~ ⌈30/2.3⌉ ≥ 13

Experiment setup: 7 Intel NCS2 sticks, installed on an edge node 
with an Intel i7-10700K CPU, 24GB main memory and Ubuntu 20.04. 

No-frame 
dropping

Random
dropping



• Object Detection Hardware 
• Fast edge node:
• CPU: Intel i7-10700K (8 cores, desktop)
• CPU Memory: 24 GB

• Slow edge node:
• CPU: AMD A6-9225 (2 cores, laptop)
• CPU Memory: 12 GB

• 7 Intel NCS2 sticks

• Test Videos: 
• ETH-Sunnyday
• https://motchallenge.net/vis/ETH-Sunnyday/
• Video FPS: 14
• #Frames: 354

• Evaluation Metrics
• Detection FPS

Experiments: Multiple detection models 
on heterogeneous AI hardware devices

https://motchallenge.net/vis/ETH-Sunnyday/


•Detection Model: YOLOv3
• Edge node + 7 NCS2 attached via USB 3.0:
• RR: balanced workloads, but the slowest device will be the bottleneck
• FCFS: better performance thanks to workloads-aware adaptation

Experiments with 8 detection models in parallel
(Round Robin Schedule v.s. FCFS Scheduler)

Detection 
FPS

#NCS2 0 1 2 3 4 5 6 7

Round-
Robin

NCS2 - 2.5 5.1 7.5 10.0 12.4 14.8 17.3
Fast CPU + 

NCS2
13.5 5.1 7.6 10.1 12.7 15.0 17.6 20.1

Slow CPU + 
NCS2

0.4 0.9 1.3 1.8 2.2 2.6 3.1 3.4

FCFS

NCS2 - 2.5 5.1 7.5 9.9 12.5 15.0 17.3
Fast CPU + 

NCS2
13.5 16.0 17.1 19.4 22.0 24.3 26.7 29.0

Slow CPU + 
NCS2

0.4 3.0 5.5 7.8 10.3 12.7 14.9 17.9

[1] IEEE CogMI 2021



Challenges of  Edge Video Analytics

q Systemic disruptions 

• Contention induced delay, performance/accuracy degradation

• Low-value data offloading induced inference errors (e.g., poor 
lighting,  foggy weather, convoluted objects, network jitter, …)

• Mismatch between incoming stream rate and the detection 
processing throughput (#frames per second – FPS)

qAdversarial disruptions (inference phase + training phase) 

• Security violation [2-6]

• Privacy violation [7-11]



Object Detection on three images with the standard detector Faster RCNN

under
attack

Benign

Adversarial Robustness of Object Detection
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Object Detection on the same images with the robust fusion detector 

[5] SIGKDD 2021
[6] CVPR 2021
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