Machine Learning Driven Material Performance Prediction

August 10, 2021

Brian Gallagher, Matt Rever, Donald Loveland, Nathan Mundhenk, Brock Beauchamp, Emily Robertson, Golam Jaman, Anna Hiszpanski, Yong Han

LLNL-PRES-801721

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

My background

	Brian Gallagher Computer Scientist, <u>Lawrence Livermore</u> Verified email at IInLgov - Homepage	Follow		Google Scholar			
	Scientific Machine Learning Data Mining	Statistical Relational Learning	g Network Analysis		Cited by		VIEW ALL
						All	Since 2016
TITLE			CITED BY	YEAR	Citations h-index	7979 26	4269 21
Predicting compressive strength of consolidated molecular solids using computer vision and deep learning B Gallagher, M Rever, D Loveland, TN Mundhenk, B Beauchamp,			13	2020	i10-index	39	34 920
Nanomaterial synthesis insights from machine learning of scientific articles by extracting, structuring, and visualizing knowledge AM Hiszpanski, B Gallagher, K Chellappan, P Li, S Liu, H Kim, J Han, Journal of chemical information and modeling 60 (6), 2876-2887			12	2020	1H	Ш	690
Reliable and explainable machine-learning methods for accelerated material discovery B Kailkhura, B Gallagher, S Kim, A Hiszpanski, TYJ Han npj Computational Materials 5 (1), 1-9				2019	ш	ш	230
	Lawrence Li	vermore		N	1L for Mater	ials Scier	ice
National Laboratory			ML for Physics Simulations				
	Network Science						
Machine Learning							
2000	2005	2010		2015		202	0
Lawrence Livermore National Laboratory						Nationa	Nuclear Security Administration

Scientific Machine Learning Applications

ML-driven physics simulations (2012 -)

- Jiang et al., A Supervised Learning Framework for Arbitrary Lagrangian-Eulerian Simulations. ICMLA 2016.
- Jiang et al., A deep learning framework for mesh relaxation in arbitrary Lagrangian-Eulerian simulations. SPIE 2019.
- Jiang et al., Exploiting Spark for HPC Simulation Data: Taming the Ephemeral Data Explosion. HPC Asia 2020.

ML-driven materials discovery & development (2015 -)

- Kailkhura et al., Reliable and explainable machine-learning methods for accelerated material discovery. npj Computational Materials 2019.
- Hiszpanski et al., Nanomaterials Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge. Journal of Chemical Information and Modeling 2020.
- Gallagher et al., Predicting Compressive Strength of Consolidated Molecular Solids Using Computer Vision and Deep Learning. Materials & Design 2020.

Machine Learning for Materials Science

Success of LLNL and partner missions requires timely development and deployment of diverse materials

Materials discovery, development and deployment requires many iterations

Two ways to help: (1) reducing the number of iterations and/or (2) reducing time per iteration

Optimizing the optimization loop

- Inform synthesis protocol
- Reduce iterations required to synthesize new materials

Hiszpanski et al., Nanomaterials Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge. Journal of Chemical Information and Modeling 2020.

2. Materials performance prediction

- Identify candidate materials
- Shorten iteration time by eliminating costly performance testing

Gallagher et al., Predicting Compressive Strength of Consolidated Molecular Solids Using Computer Vision and Deep Learning. Materials & Design 2020.

1.

Using Machine Learning to Predict Material Performance

Performance baselines: human assessment & instrument measurements

Approaches: "Traditional" Computer Vision + ML vs. End-to-end Deep Learning

Sample preparation and data collection

Experimental Setup & Results

- Regression (predict scalar peak-stress)
- Goal is generalization to unseen lots
 - Leave out an entire lot for evaluation
 - Lot classification is a much easier problem

Explaining the results to a Materials Scientist Part I

First: texture (BSIF) is more predictive of performance than local shape (BoVW).

Second: BSIF is capturing something that current approaches do not.

Explaining the results to a Materials Scientist Part II

Conclusions: Material Performance Prediction

- Computer Vision/ML approach yields 24% improvement
- Synthesizing more material lots improves performance
 Trend expected to continue in the short term
- Deep Learning is the more powerful (lower bias) method
 - The more powerful method is not always the best.
 - Don't underestimate variance!
 - Don't underestimate robustness and usability!
- Fine crystal attributes are strong indicators of material strength
 - Not adequately captured by current instruments or human assessment

Gallagher et al., Predicting Compressive Strength of Consolidated Molecular Solids Using Computer Vision and Deep Learning. Materials & Design 2020.

Material Performance Prediction: Ongoing Work

- Real-world data acquisition conditions
 - SEM filament change (Zhong)
- Material defect detection
 - Detect, classify, and quantify CT anomalies (Loveland)
- Uncertainty quantification
 - Bayesian neural networks, deep ensembles, and uncertainty calibration (*Zhang, Kailhura*)
- Explainable deep learning
 - GAN-based image editing (Liu, Zhang, Kailkhura)
 - Texture-based explanation (Mundhenk)

Acquisition conditions affect images

Defect identification in 3D CT data

Contact: Brian Gallagher (<u>bgallagher@llnl.gov</u>)

Center for Applied Scientific Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.