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Prognosis and digital twins

Onshore wind energy example

(a) Drivetrain components (b) Drivetrain components
A
Generator Gearbox-LSS
Gearbox $300K
Main
bearing 1

L]

Repair/replacement cost

Frequency of occurrence

Sethuraman, L., Guo, Y., & Sheng, S. (2015). Main bearing dynamics in three-point suspension drivetrains for wind turbines. American Wind Energy Association
Conference & Exhibition, May 18-21, Orlando, FL.
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Problem — challenge — solution — benefits

Unquantified internal damage
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Major problem
* Maintenance and operation costs.

Challenges:
* Physics not fully understood
e Datais highly unstructured

Proposed solution
e Hybrid physics-informed neural networks

Benefit
* Predictive maintenance = reduced costs
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Outline

* Physics-informed neural networks?
* Hybrid models and predictive maintenance
* Application examples

e Summary and conclusions

_/\\@ Probabilistic Mechanics Laboratory



Background: neural networks and backpropagation

Main concern: Large number of parameters to be trained (depth of the neural networks)

Solution: Backpropagation of the gradients

(a) Forward pass (b) Backward pass
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Physics-informed neural networks (30,000 ft view)

Computational mechanics
Elasticity:
V.o+F =pu

1
€= [Vu + (Vu)7]

o=2C:e€

Finite element modeling

https://developer.nvidia.com/simnet

Physics-inf

X, t-»

ormed neural networks

Physics: 3—’; = D[y(x,t)]

Initial conditions: y(x,t = 0) = y®

Boundary conditions: y(x®),t) = y®) and
Bly(x®), )] = B®

Domain:x €l c R"andt € [0,T] Ay

Operators applied to neural
net at collocation points

Applied loads
g

Collocation
points

Constraints at
collocation points

i = (0) .,(b)
y _’_ at ’ D[y(xp t)] ’ }’(x,t — O)' y ’ y(h)'
y(x®),t),and B[y(x®),t)] and B
‘ ) Loss
function
Gradient descent

optimizer
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Literature is very abundant!

JOURNAL OF COMPUTATIONAL PHYSICS 91, 110-131 (1990}

Neural Algorithm for Solving Differential Equations

Hyuk Lee

Department of Electrical Engineering, Polytechnic Institute of New York,
Brooklyn, New York 11201

AND

In SEok KANG

Department of Chemical Engineering, California Institute of Technology,
Pasadena, California 91125

Received August 17, 1988; revised October 6, 1989

Finite difference equations are considered to solve differential equations numerically by
utilizing minimization algorithms. Neural minimization algorithms for solving the finite dif-
ference equations are presented. Results of numerical simulation are described to demonstrate
the method. Methods of implementing the algorithms are discussed. General features of the
neural algorithms are discussed. ~ © 1990 Academic Press, Inc.

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 16, NO. 6, NOVEMBER 2005
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Finite-Element Neural Networks for Solving
Differential Equations

Pradeep Ramuhalli, Member;, IEEE, Lalita Udpa, Senior Member, IEEE, and Satish S. Udpa, Fellow, IEEE
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Fig. 1. lterative inversion method for solving inverse problems.

resulting in the corresponding solution to the forward problem
(6). The model output is compared to the measurement (6,
using a cost function F(, ). If F(¢.) is less than a toler-
ance 8, the estimate s used as the desired solution. If not, a
is updated to minimize the cost function.

SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED MATHEMATICS
Data-driven discovery of partial differential equations

Samuel H. Rudy,'* Steven L. Brunton,” Joshua L. Proctor,’ J. Nathan Kutz'

We propose a sparse regression hod capable of discovering the governing partial differential equation(s) of
a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-
promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most
accurately represent the data, bypassing a combinatorially large search th ibl didate models.

h all possible ¢
The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto
analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spa-
tially, or in a Lagrangian framework, where the sensors move with the dy The hod is ¢

efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of s:lemiﬂc
domains including Navier-Stokes, the quantum harmonlc oscillator, and the diffusion equation. Moreover, the
method is capable of d | g T y al terms by using multiple time
series taken with different InItIaI data. Thus, for a traveling wave, the thod can disti hb a linear
wave equation and the Korteweg-de Vries equation, for instance. The method provldes ap g new tech-
nique for discovering governing equations and physical laws in p ized sp poral sy where
first-principles derivations are intractable.

Neural Ordinary Differential Equations

Ricky T. Q. Chen®, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto. Vector Institute
{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

Abstract

We introduce a new family of deep neural network models. Instead of specifying a
discrete sequence of hidden layers. we parameterize the derivative of the hidden
state using a neural network. The output of the network is computed using a black-
box differential equation solver. These continuous-depth models have constant
memory cost. adapt their evaluation strategy to each input. and can explicitly trade
numerical precision for speed. We demonstrate these properties in continuous-depth
residual networks and continuous-time latent variable models. We also construct
continuous normalizing flows. a generative model that can train by maximum
likelihood. without partitioning or ordering the data dimensions. For training. we
show how to scalably backpropagate through any ODE solver. without access to its
internal operations. This allows end-to-end training of ODEs within larger models.

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locateljcp

Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving
nonlinear partial differential equations

M. Raissi®, P. Perdikaris "*, G.E. Karniadakis *

 Division of Applied Mathematics, Brown University, Providence, I, 02912, USA
® Department of Mechanical Engineering and Applicd Mechanics, University of Pennsylvani, Philadelphia, PA. 19104, USA

ARTICLE INFO ABSTRACT

Articl history: We introduce physics-informed neural networks — neural networks that are trained to solve
Received 13 June 2018 supervised learning tasks while respecting any given laws of physics described by general
Received in revised form 26 October 2018 nonlinear partial differential equations. In this work, we present our developments in the
(Accepted 28, October 2015 context of solving two main classes of problems: data-driven solution and data-driven
Avilable online 3 November 2018

discovery of partial differential equations. Depending on the nature and arrangement of
Keywords: the available data, we devise two distinct types of algorithms, namely continuous time
Data-driven scientific computing. and discrete time models. The first type of models forms a new family of data-efficient
Machine learning spatio-temporal function approximators, while the latter type allows the use of arbitrarily
accurate implicit Runge-Kutta time stepping schemes with unlimited number of stages. The
effectiveness of the proposed framework is demonstrated through a collection of classical
problems in fluids, quantum mechanics, reaction-diffusion systems, and the propagation of
nonlinear shallow-water waves.

Predictive modeling
Runge-Kutta methods
Nonlinear dynamics.
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Archives of Computational Methods in Engineering
https://doi.org/10.1007/511831-021-09539-0

SURVEY ARTICLE

A Survey of Bayesian Calibration and Physics-informed Neural
Networks in Scientific Modeling

Felipe A. C.Viana' @ - Arun K. Subramaniyan®

Received: 28 September 2020 / Accepted: 7 January 2021
© CIMNE, Barcelona, Spain 2021

Abstract
Computer simulations are used to model of complex physi stems. Often, these models represent the solutions (or at least
i s) to partial ions that are obtained through costly numerical integration. This paper presents
a survey of two important learning approaches that have shaped the field of scientific modeling. Firstly
we survey the of computer models since the seminal work by Kennedy and O’Hagan.
In their paper, the authors proposed an elegant way to use the Gaussian processes to extend calibration beyond parameter
and observation uncertainty and include model-form and data size uncertainty. Secondly, we also survey physics-informed
neural networks, a topic that has been receiving growing attention due to the potential reduction in computational cost and
modeling flexibility. In addition, in order to help the interested reader to familiarize with these topics and venture into custom
implementations, we present a summary of applications and software tools. Finally, we close the paper with suggestion for
future research directions and a thought provoking call for action.

on Bayesian

How about physics-informed neural networks for digital twins?
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Hybrid models can reduce prediction error

] (a) Fatigue crack growth at fuselage panel
Fatigue crack growth
A AS,

da _ CAK™
dN

where:
 N:number of cycles
 ( and m: material properties (coupon tests)

y
« AK = FAS+\/ma
* AS: cyclic stresses (e.g., from finite element

models) (b) Finite element modeling

What if AK or AS are not accurate?

We will show how hybrid models
can account for missing physics
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In prognosis, data is very unbalanced

(a) Typical training

]

years
—  Cell =1 Cell +—» = —p! Cell
X W
years

Very hard (impossible) without physics

(b) Typical prediction

|

years

!
I

years

Blue: observed data
Gray: desired output (never fully observed)
Recurrent neural network prediction
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Hybrid physics-informed neural networks?

(a) Long short-term memory (LSTM) cell (b) Euler integrator cell (cumulative damage)
| i
Fmmmmmmmmmm—— - -
1 1
at—1 ) >
I 1
I 1
I 1
1 »[ f(xta at—l) 1
1
) N ,'
e
A A A
a ai an at
—>» Cell —>» Cell —>»..—>» Cell —>»
A A A
X1 X2 Xt
da
aN CAK™ = f(xya;-1) = CAK™

F. A. C. Viana, R. G. Nascimento, A. Dourado, and Y. A. Yucesan, "Estimating model inadequacy in ordinary differential equations with physics-informed neural
networks," Computers and Structures, Vol. 245, pp. 106458, 2021.
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from tensorflow.keras.layers import RNN, Dense, Laver

class EulerIntegratorCell(Layer):
def __init_ (self, C, m, dKlayer, a@=None, units=1, sxkwargs):
super(EulerIntegratorCell, self).__init_ (%xkwargs)
self.units = units

self.C =

self.m =m

self.a® = ao
self.dKlayer = dKlayer

def call(self, inputs, states):

inputs = convert_to_tensor(inputs)

a_tml = convert_to_tensor(states)

x_d_tml = concat((inputs, a_tml[@, :]), axis=1)
dk_t = self.dKlayer(x_d_tml)

da_t = self.C * (dk_t s** self.m)

a = da_t + a_tmi[0, :]

return a, [a]

def create_model(C, m, a@, dKlayer, batch_input_shape, return_sequences=False, return_state=False):

euler = EulerIntegratorCell(C=C, m=m, dKlayer=dKlayer, a@=a@, batch_input_shape=batch_input_shape)

PINN = RNN(cell=euler, batch_input_shape=batch_input_shape, return_sequences=return_sequences, return_state=return_state)
model = Sequential()

model.add(PINN)

y e . - & <
model.compile(loss="mse’, optimizer=RMSprop(le-2)) R. G. Nascimento, K. Fricke, and F. A. C. Viana, “A tutorial on solving ordinary differential equations

return model using Python and hybrid physics-informed neural network,” Engineering Applications of Artificial
Intelligence, Vol. 96, 2020, 103996.
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Case study #1: wind turbine main bearing fatigue

(a) Input data (b) Visual grease inspection ranking

Example of ranking

B
=L
~

wind speed
(m/s)

bearing temp
(°C)

Y. A. Yucesan and F. A. C. Viana, "Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection," Computers in Industry, Vol.
125, pp. 103386, 2021.
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1.5MW / 80m hub-height turbine

Multi-body physics model

Large installed basis: very popular

o
between 2005 and 2010.
1200 - 30
é ;2:1100- Pwr 25
Available simulations and data 2 a 1000 100 3
. T T =
(National Renewable Energy £3 " p Gl
= Loso <
Laboratory) L =pe 2
38 - - 0.25
500 - 0.00

4 6 8 10 12 14 16 18 20 22 24
wind speed (m/s)

Sethuraman, L., Guo, Y., & Sheng, S., “Main bearing dynamics in three-point suspension drivetrains for wind turbines,” American Wind Energy Association Conference &
Exhibition, Orlando, USA, May 18-21, 2015.
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Physics-based cumulative damage model

Bearing
and grease
damage

Bearing life is calculated using formula (ISO 281):
L = a(c/P)10/3

* « grease related life adjustment factor,
e (/P dynamic load ratio.

Palmgren-Miner’s rule (different load levels):

1
A =—
damage I

Y

T

9 Grease
damage
®  increment

NS

Grease curves

Bearing loads

, ¥

w

Bearing design

data and curves

\

Bearing

I

damage increment

N Bearing
>@-—> and grease
damage

Inputs

Y. A. Yucesan and F. A. C. Viana, “A physics-informed neural network for wind turbine main bearing fatigue,” International Journal of Prognostics and Health

Management, Vol. 11 (1), 2020.
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Grease inspection and hybrid model

(a) Example of grease visual inspection data

5 El
PR Turbine #1 i il
X 3 -
C
£ 24
1A @ @ &
0_
5_
4. Turbine #2
X 3
o
£ 2
1-
0-I T
0 1 2 3 4 D 6
months

(b) Hybrid physics-informed
neural network model

Bearing - N\ Bearing
and grease and grease
damage damage

Y

/1.

at time t-1 Grease at time t
> damage —
v : increment

Grease curves ‘ '
Data-driven
] layers
N Bearing design g
[\ _ dataand curves |
+ Physics
Bearing loads Bearing layers
s ’ : damage increment —
. J
_______ s
_______ i
‘‘‘‘‘ !
initial damage
damage_> e M S e = ol > estimate
SCADA data SCADA data SCADA data
at time 1 at time 2 attimet
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Turbine-level service optimization

0.99 4

—— 3 months
0.9 -—— 18 months
0.8 -—— optimized
o A
Hybrid model can be used for turbine-
specific regreasing optimization.

© 00000
N W HUIO

unreliability

Benefits are cumulated throughout a 0-07;
park — reduced maintenance costs. §§§
0.02 1

0.01 T T T T T T LI T T
10° 101 Target
years

Y. A. Yucesan and F. A. C. Viana, “Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection,” Computers in Industry,
Vol. 125, pp. 103386, 2021.

102
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Deploying it at scale

Main bearing fatigue example:
* Training (10 turbines/6 months)
* Input data: ~260K points
e Labeled data: 60 points
* Small GPU cluster: overnight

* Inference (120 turbines/30 years)
* Input data: ¥190M points

e Small GPU cluster: few minutes

At scale

e 10s to 100s digital twin models per turbine

* 100s to 1000s turbines
 Decent GPU cluster

e Training: weeks

* Inference: hours

* Optimization: days

Main

bearing .

_Aéf’:i Probabilistic Mechanics Laboratory
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Lithium-ion battery aging modeling

Challenges:
* Prognosis models depend on several empirically

adjusted factors
* Hard to account for aging

Collaboration with
e Diagnosis and Prognosis Group @ NASA Ames
Research Center

R. G. Nascimento et al., “Hybrid Physics-Informed Neural Networks for Lithium-lon Battery Modeling and Prognosis,” to be published.
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Typical duty cycle and drifting of models

(a) Example of random loading conditions

4.0

< 3.0

+J

C
9 2.0

>
O 101

0 5 10 15 20 25 30 35 40

Voltage (
w
ul

0 5 10 15 20 25 30 35 40
Time (m)

(b) Aging can cause models to diverge from observations

4.2
4.0
238
()]
g36-
S 3.41
>

3.2

3.0 4

0.0

0.8

16

14.7 15.0
Time (h)

" '831.4831.7832.0
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Hybrid physics-informed neural network

Voltage
at time t
A
Battery :‘-IlllllllllllllllllllllllIIIIIII% lllllllllllllllllllllllllllllllllll LAl Battery
states — > > states
timet-1 : - — g S==s==g . :  timet :
: Li ion / , Physics
concentration \_)'\ Vo, _Vn K >
. L increment 5 N
: f ) Equilibrium
Voltage increment A
. (based on Butler- potential Data-driven
: . Volmer model) | (Nernst model) ClIEE
Battery aging J Internal J Variational
: parameters Voltage kernels
-:fl.l l.: llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
Current )
timet * * .".
Battery ] Battery
states —» Cell —>» Cell —>» .. —» Cell —> states
time 0 * * $ time t
Current Current Current
time 1 time 2 time t

R. G. Nascimento et al., “Hybrid Physics-Informed Neural Networks for Lithium-lon Battery Modeling and Prognosis,” to be published.
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Forecasting with hybrid digital twin

(a) Aging model

13 le4d

Forecast
1.2

1.1
1.0 1
x 0.9
m
S
T 0.8
0.7

0.6 - Fleet prior
—+— Observations oply

0.5 1 Observations + fleet prior

0.4 . - . .
0.0 0.5 1.0 1.5 2.0 2.5
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3.0

3.5

/

(b) Probabilistic forecast data

4.2
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4.0 - —+— Observations only
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w
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3.4 1
3.2 1
3.0 1 . . |
0 500 1000 1500 2000
Time (s)
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Model-form uncertainty in corrosion fatigue

Challenge - . _J

e Assumed: pure mechanical fatigue
e After 5 years: corrosion-fatigue

p-u —»
- —
-.—
Data
AS,

* Load history of 5 years: 150 aircraft
* Crack length: 15 aircraft at end of 5t year.

Damage accumulation grossly underestimated!!!

(a) Hybrid physics-informed neural network cell

a1 :C a;

Stress Fatigue Aay, £
intensity damage
range increment A

. . Aa
> Corrosion-fatigue CFt )
% damage increment

Xt

A. Dourado and F. A. C. Viana, “Physics-informed neural networks for missing physics estimation in
cumulative damage models: a case study in corrosion fatigue,” ASME Journal of Computing and
Information Science in Engineering, Vol. 20 (6), 10 pages, 2020.

(b) Fleet prediction at the end of 5t year.

40
False Positive:

— 30 >
IS w
£ True Positive:
= 22
© 20 .
i3] True Negative:
b 123 False Negative:
E 10 4 J - 0

0 . : ;

0 10 20 30 40
Actual [mm]

(c) Probability of failure forecast

1.0
—— corrosion-fatigue
08 rnn prediction
£
S
< 0.61
A
Z 0.4
[V
=)
O
.2
0.0+ ]
5 6 7 8 9 10
Years
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Integration with NVIDIA SimNet

Proposed digital twin: (a) Engineering analysis Onoop X AP
NVIDIA SimNet: AP: pressure differential
N . . Altitude function of altitud
* Stress as a function of pressure differential (function of altitude)
* Linear elastic analysis Crack growth:
da
— = CAK™ and AK = FAS+\/mta
UCF hybrid physics-informed neural networks: — > an
« Perform damage accumulation Origin Destination ~ F = 1.122 (assumed)
g F = f(a) (reality)

e Adjust local stresses
(b) Digital twin model

>imNet 5|mula|ons Cumulative damage cell

Plyush MOdl

1 Manuf

N o o e e e e e

Recurrent neural network

https //pIaverwmeocom/V|deo/474830082
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https://player.vimeo.com/video/474830082

Application outside prognosis: torsional vibration damper

(a) Front engine accessory drive (b) Model and experimental testing

output

=)

L\,
b rubber ring

x=[f,T]"

Hot air
Temperature
controlled box

Y. A. Yucesan, F. A. C. Viana, L. Manin, and J. Mahfoud, "Adjusting a torsional vibration damper model with physics-informed neural networks," Mechanical Systems and Signal Processing, Vol. 154, pp.
107552, 2021. (DOI: 10.1016/j. ymssp.2020.107552).
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Hybrid model and results
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Probabilistic Mechanics Laboratory

Publications:

pml-ucf.github.io/publications

O GitHub b-

Andre Von Zuben

Physics-informed neural networks package
github.com/PML-UCF/pinn

Ordinary differential equation solver:
https://github.com/PML-UCF/pinn ode tutorial

Renato Nascimento Yigit Yucesan

Wind turbine main bearing fatigue

github.com/PML-UCF/pinn_wind _bearing Sponsors and Collaborators

iiNREL

NATIONAL RENEWABLE ENERGY LABORATORY

<ZNVIDIA  INSA
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Corrosion-fatigue prognosis BakerHughes 8
github.com/PML-UCF/pinn_corrosion fatigue
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https://github.com/PML-UCF/pinn
https://github.com/PML-UCF/pinn_ode_tutorial
https://github.com/PML-UCF/pinn_wind_bearing
https://github.com/PML-UCF/pinn_corrosion_fatigue
https://pml-ucf.github.io/publications.html
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