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Prognosis and digital twins

Gearbox-LSS
$300K

Frequency of occurrence
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Gearbox-HSS
$25-90K

Main bearing 
$150-$300K

Gen. bearing 
$10-$20K

Sethuraman, L., Guo, Y., & Sheng, S. (2015). Main bearing dynamics in three-point suspension drivetrains for wind turbines. American Wind Energy Association 
Conference & Exhibition, May 18–21, Orlando, FL.

Onshore wind energy example

(a) Drivetrain components (b) Drivetrain components

Main 
bearing

Gearbox
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Problem → challenge → solution → benefits

Major problem

• Maintenance and operation costs.

Challenges:

• Physics not fully understood
• Data is highly unstructured

Proposed solution

• Hybrid physics-informed neural networks

Benefit

• Predictive maintenance = reduced costs

Pristine
Unquantified internal damage
(recorded flange wear)

Rolling element damage Unquantified damage
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Outline

• Physics-informed neural networks?

• Hybrid models and predictive maintenance

• Application examples

• Summary and conclusions
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Background: neural networks and backpropagation

Main concern: Large number of parameters to be trained (depth of the neural networks)

(b) Backward pass(a) Forward pass

Solution: Backpropagation of the gradients
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Physics-informed neural networks (30,000 ft view)

https://developer.nvidia.com/simnet

Computational mechanics

Elasticity:
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Finite element modeling

Physics-informed neural networks
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Literature is very abundant!

How about physics-informed neural networks for digital twins?
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Hybrid models can reduce prediction error

We will show how hybrid models

can account for missing physics

Fatigue crack growth

/0
/1 = 2Δ4"

where:
• 1: number of cycles
• 2 and 5: material properties (coupon tests)
• Δ4 = 6Δ7 80
• Δ7: cyclic stresses (e.g., from finite element 

models)

What if 9: or 9; are not accurate?

(a) Fatigue crack growth at fuselage panel

(b) Finite element modeling
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In prognosis, data is very unbalanced

(a) Typical training (b) Typical prediction

Blue: observed data
Gray: desired output (never fully observed)
Orange: Recurrent neural network prediction

Very hard (impossible) without physics
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Hybrid physics-informed neural networks?

F. A. C. Viana, R. G. Nascimento, A. Dourado, and Y. A. Yucesan, "Estimating model inadequacy in ordinary differential equations with physics-informed neural 
networks," Computers and Structures, Vol. 245, pp. 106458, 2021.

(b) Euler integrator cell (cumulative damage)(a) Long short-term memory (LSTM) cell

!"
!# = %Δ'! ⟹ ) *", ""#$ = %Δ'!
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from tensorflow.keras.layers import RNN, Dense, Layer

R. G. Nascimento, K. Fricke, and F. A. C. Viana, “A tutorial on solving ordinary differential equations 
using Python and hybrid physics-informed neural network,” Engineering Applications of Artificial 
Intelligence, Vol. 96, 2020, 103996.
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Case study #1: wind turbine main bearing fatigue

1 2 3

4 5

(b) Visual grease inspection ranking(a) Input data
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Y. A. Yucesan and F. A. C. Viana, "Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection," Computers in Industry, Vol. 
125, pp. 103386, 2021.

Example of ranking
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1.5MW / 80m hub-height turbine
Multi-body physics model
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Sethuraman, L., Guo, Y., & Sheng, S., “Main bearing dynamics in three-point suspension drivetrains for wind turbines,” American Wind Energy Association Conference & 
Exhibition, Orlando, USA, May 18–21, 2015.

Large installed basis: very popular 
between 2005 and 2010.

Available simulations and data 
(National Renewable Energy 
Laboratory)
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Physics-based cumulative damage model

Y. A. Yucesan and F. A. C. Viana, “A physics-informed neural network for wind turbine main bearing fatigue,” International Journal of Prognostics and Health 
Management, Vol. 11 (1), 2020.

Bearing life is calculated using formula (ISO 281):

, = - ⁄% / $%/'

• - grease related life adjustment factor,
• ⁄% / dynamic load ratio.

Palmgren-Miner’s rule (different load levels):

Δ damage = 1
,
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Grease inspection and hybrid model

(a) Example of grease visual inspection data (b) Hybrid physics-informed 

neural network model

Data-driven
layers

Physics
layers
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Turbine-level service optimization

Hybrid model can be used for turbine-
specific regreasing optimization.

Benefits are cumulated throughout a 
park → reduced maintenance costs.

Y. A. Yucesan and F. A. C. Viana, “Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection,” Computers in Industry, 
Vol. 125, pp. 103386, 2021.

Target
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Deploying it at scale

Main 
bearing

Main bearing fatigue example:

• Training (10 turbines/6 months)
• Input data: ~260K points
• Labeled data: 60 points
• Small GPU cluster: overnight

• Inference (120 turbines/30 years)
• Input data: ~190M points
• Small GPU cluster: few minutes

At scale

• 10s to 100s digital twin models per turbine
• 100s to 1000s turbines
• Decent GPU cluster

• Training: weeks
• Inference: hours
• Optimization: days
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Lithium-ion battery aging modeling

Challenges:

• Prognosis models depend on several empirically 
adjusted factors

• Hard to account for aging

Collaboration with

• Diagnosis and Prognosis Group @ NASA Ames 
Research Center

R. G. Nascimento et al., “Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery Modeling and Prognosis,” to be published.
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Typical duty cycle and drifting of models

(b) Aging can cause models to diverge from observations(a) Example of random loading conditions
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Hybrid physics-informed neural network

R. G. Nascimento et al., “Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery Modeling and Prognosis,” to be published.



21

Forecasting with hybrid digital twin

(a) Aging model (b) Probabilistic forecast data 

Forecast
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Model-form uncertainty in corrosion fatigue

!!

A. Dourado and F. A. C. Viana, “Physics-informed neural networks for missing physics estimation in 
cumulative damage models: a case study in corrosion fatigue,” ASME Journal of Computing and 
Information Science in Engineering, Vol. 20 (6), 10 pages, 2020.

(b) Fleet prediction at the end of 5th year.

(c) Probability of failure forecast(a) Hybrid physics-informed neural network cell

Challenge
• Assumed: pure mechanical fatigue
• After 5 years: corrosion-fatigue

Data
• Load history of 5 years: 150 aircraft
• Crack length: 15 aircraft at end of 5th year.

Damage accumulation grossly underestimated!!!
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Integration with NVIDIA SimNet

Proposed digital twin:
NVIDIA SimNet:

• Stress as a function of pressure differential
• Linear elastic analysis

UCF hybrid physics-informed neural networks:
• Perform damage accumulation
• Adjust local stresses

6())* ∝ Δ/
Δ/: pressure differential 
(function of altitude)

Crack growth:
+,
+- = %Δ'! and Δ' = 8Δ9 :"
; = <. <>> (assumed)
; = ?(A) (reality)

Origin Destination

Altitude

(a) Engineering analysis

(b) Digital twin model

Recurrent neural network

Cumulative damage cellSimNet simulations

https://player.vimeo.com/video/474830082

https://player.vimeo.com/video/474830082
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Application outside prognosis: torsional vibration damper

Y. A. Yucesan, F. A. C. Viana, L. Manin, and J. Mahfoud, "Adjusting a torsional vibration damper model with physics-informed neural networks," Mechanical Systems and Signal Processing, Vol. 154, pp. 
107552, 2021. (DOI: 10.1016/j. ymssp.2020.107552). 

(a) Front engine accessory drive (b) Model and experimental testing
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Hybrid model and results
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Probabilistic Mechanics Laboratory

Renato Nascimento Yigit Yucesan

Arinan Dourado Kajetan FrickeAndre Von Zuben

Credit really goes to my PhD students

Sponsors and Collaborators

Physics-informed neural networks package
github.com/PML-UCF/pinn

Ordinary differential equation solver:
https://github.com/PML-UCF/pinn_ode_tutorial

Wind turbine main bearing fatigue

github.com/PML-UCF/pinn_wind_bearing

Corrosion-fatigue prognosis

github.com/PML-UCF/pinn_corrosion_fatigue

Publications:
pml-ucf.github.io/publications

https://github.com/PML-UCF/pinn
https://github.com/PML-UCF/pinn_ode_tutorial
https://github.com/PML-UCF/pinn_wind_bearing
https://github.com/PML-UCF/pinn_corrosion_fatigue
https://pml-ucf.github.io/publications.html



