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Outline

In this talk we shall go through

* Neural architecture search (NAS) at scale using DeepHyper.

* Surrogate model discovery for geophysical flows using NAS.

* Comparisons of NAS Surrogates with state-of-the-art forecast models.
* Using NAS for ensemble epistemic uncertainty quantification.

* Some other interesting tidbits.
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Motivation for NAS

Surrogate models may be used for accelerating geophysical forecasting
and downstream tasks such as data assimilation. PDE-based methods

suffer from large compute/memory costs.

Two phase development for PDE-free forecasting

Surrogate formulation (dimension reduction)
Neural network discovery (at scale).

Temperature forecasting:
Weekly averaged sea-surface temperature
Applications: forecasting ENSO/MJO
phenomena, predicting aquatic migration
patterns.

: : . J. Climate, 20, 5473-5496
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Our representative dataset

NATIONAL CENTERS FOR
ENVIRONMEN'[&II_ INFORMATION

NATIONAL EANIC M i1 C DMINISTRATION

Home Climate Information Data Access Customer Support Contact About

Originally available daily on
1/4° grid - we down-sample to
1° and average weekly.

Home = OISST Home > Optimum Interpolation Sea Surface Temperature (OISST) v2.0

Optimum Interpolation Sea Surface Temperature (OISST)

timum Interpolation ¢

Surface Temperature VZ-O

Optimuminterpoton  TheNOAA 14"l Optimum Inerpolatin sa Generated from satellites and
Sea Surface Temperature ) B ) i Daily OISST int MAR2020

(0ISST) V2.0 OISO e ST  ———— _ ship observations.

Periodic dynamics (seasonal)
iy but also full of long term
Thv:—:-m:r?-thc:n::i ogy inc i justment of satellite patterns (EI NiﬁO)

interpolating to fill in gaps.
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Most recent daily OISST map.

temperatures (Reynolds 1993 ).

Contact: oisst-help@noaa.gove
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The proper orthogonal decomposition

The Swiss-army knife of data analysis in computational physics

Imstantaneous

s
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(c.g. FOD)
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Fig. 1 Modal decompuosition of two-dimensional incompressible flow over a flat-plate wing [25,26] (Re = 100 and @ = 30 deg). This example shows
complex nonlinear separated flow being well represented by only two POD modes and the mean flowfield. Visualized are the streamwise velocity profiles.

Applications:
Modal analysis
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Taira et al., AIAA J., 55, 12, 2017

POD-bases computed
through method of
shapshots

Method of snapshots
finds orthonormal bases
which are ordered
according to variance
capture (basically PCA)

Solves for the POD
basis through an
eigenvalue problem that
scales with the number
of snapshots
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Long short-term memory neural networks

Specialized neural network architecture for handling data that
are correlated in time.

ANo ( A1
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) "'Ni_':' .
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time
Allows for non-
a1 = F(h") Markovian
assumptions
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— The LSTM is a specialized architecture that allows for forecasting of temporal (non-i.i.d) data
— The above set of equations is how LSTMs are generally used (1 cell)
— LSTMs are also occasionally stacked

Hochreiter, Sepp, and Jiirgen Schmidhuber. "Long short-term memory."
Argonne Leadership Computing Facility Neural computation 9.8 (1997): 1735-1780.
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Back to our first problem

Training and validation range 1981-1989

Compression

Decomposition

Time\
—>» Longitude

NOAA V2 Optimum Interpolation
Sea-surface temperatures

Testing range 1990-2018

Reconstruction
-

Latitude
+

rorecast —> Longitude

y
Proper Orthogonal

Training and validation range 1981-

1989

—» POD Coefficient

Testing range 1991-2018
—3 POD Coefficient

-
Forecast

Architecture
Search

Best LSTM architecture

Fig. 1. Our proposed NAS approach for automated POD-LSTM development. Snapshots of spatiotemporally varying training data are compressed by using
proper orthogonal decomposition to generate reduced representations that vary with time. These representations (or coefficients) are used to train stacked
LSTMs that can forecast on test data. The POD basis vectors obtained from the training data are retained for reconstruction using the forecast coefficients.
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The DeepHyper Project

DeepHyper is a scalable hyperparameter and neural
architecture search package for leadership class
computing systems

Applications: Cancer drug response, geophysical
surrogate modeling, neuromorphic computing, nuclear

physics. pPer }

This talk:
1. Discover LSTM architectures.
2. Discover compression frameworks.
3. Use NAS-discovered models for ensemble UQ.

https:/igithub.com/
deephyper/deephyper

_ _ y Scalable reinforcement-learning-based neural architecture search for a
8  Argonne Leadership Computing Facility cancer deep learning research, SC 2019 Argonne
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Configuring a neural architecture search

How do we define a space of neural networks?

A neural network is represented as a directed acyclic graph with nodes and edges.

Nodes represent possible operations, for example:
. “Add an identity layer”

. “Add a layer with 40 neurons”

. “Add a layer with 60 neurons”

. “Add a dropout operation”

. “Add a skip connection to another node”

OLrWNE

Nodes can be constant - (i.e., predefined and immutable during the search)

Nodes can be variable - (i.e., the search can tweak these to get better performance)

Each variable node has an upper bound on the number of operations (which may be

expressed as a categorical variable). Edges define the flow of the tensor in the graph.

9  Argonne Leadership Computing Facility
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DeepHyper NAS-API

def create_search spaCe(input_shape {8,5,)4
output shape=(8,5,),
num layers=10,

args, kwargs) :

arch KSearchSpace(input_shape, output shape, regression=True)
source prev_input arch.input nodes[0]

anchor_points collectiofis.deque([source], maxlen=2)

Farge{mum—tayers) :
vnode VariableNode()
add 1stm seq (vnode)

arch.connect(prev_inputs” vnode)

cell output vnode

cmerge ConstantNode()
cmerge.set op(AddByProjecting(arch, [cell output], activation='relu'))

anchor anchor points:

skipco VariableNode()

skipee.add op(Tensor([1)L}

skipco.add op(Connect(arch, anchor))
arch.connect(skipco, cmerge)

prev_input cmerge
anchor_points.append(prev _1input)

cnode ConstarEiedal)
add~tstm oplayer (cnode,5)
g@rch.connect(prev_input,cnode)

arch

10 Argonne Leadership Computing Facility

Define the shape of our
input/output tensors

Define the range of nodes to
look for skip connections

Add an LSTM operation

def add lstm seq (node):
node.add op(Identity())

units range(16, 97, 16):
node.add op(tf.keras.layers.LSTM(units=units, return sequences=True))

Code to project tensors coming from skip
connections

Connect to previous node

The output from the architecture
Is a constant operation for a
consistent last dimension

Argonne 4
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DeepHyper NAS-API

search_space create search space(num layers=5)

ops [random() range(search_space.num_nodes) ] Fun to
search_space.set ops(ops)

model search_space.create model() generate
model.summary ()

plot model(model, to file='sampled neural network.png', show shapes=True) random

print("The sampled_neural network.png file has been generated.")

architectures!

68,152
parameters

172,424
parameters

344,424
Parameters
(more
skipsl/layers)
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DeepHyper on Theta

1. Multiple compute nodes of Theta
can evaluate different architectures
(asynchronously*')

2. Balsam is used to schedule the
different evaluations (integrated into
DeepHyper)

3. Two bash commands to fire off a
multiple compute node search once
load_data and search_space
functions are ready.

1. Search strategies may affect this (to be

. ) » continued)
12 Argonne Leadership Computing Faciity % Argonne®




Exploring this search space intelligently

Regularized evolution to explore the search space of possible architectures

Algorithm 1 Aging Evolution

population + empty queue - The population.
history + & > Will contain all models.
while |population| < P do e Initialize population.

model.arch +— RANDOMARCHITECTURE( )
model.accuracy +— TRAINANDEVAL(model.arch)
add model to right of population
add model to history
end while
while |history|

sample +— @ - Parent candidates.
while |sample| < S do

candidate + random element from population

= The element stays in the population.

add candidate to sample
end while
parent +— highest-accuracy model in sample
child.arch +— MUTATE(parent.arch)
child.accuracy +— TRAINANDEVAL(child.arch)
add child to right of population
add child to history

remove dead from left of population - Oldest.

discard dead
end while
return highest-accuracy model in history

C' do = Evolve for ' cycles.

Initialize architectures
randomly

Evaluate their validation
metrics

Choose some samples
from the total population
randomly

Mutate the highest
accuracy network in the
set of samples (perturb
one variable node)

Real, Esteban, et al. "Regularized evolution for image
_ _ » classifier architecture search.” Proceedings of the aaai &
13 Argonne Leadership Computing Facility conference on artificial intelligence. Vol. 33. 2019. Argonne
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Searching for a surrogate LSTM

1. Experiment run on 128 compute nodes of Theta for 3 hours of

. i (None, 8..5)
(None, 3, 50)

wall time

2. Skip-connection look-back window of 2 nodes
. Training for 20 epochs
Post-training for 100 epochs w

(None, 5,96

. Network with 5 layers

Ul A W

Validation R"N2 , ~
o oo 290 ] \

Dense -
None,3,96) Mone, ,96)

oc
| =
o
—
L)

Best model

(None, 8, 96)
(None, 8, 96)

Yalid

(None, 8, 96)

G B0
Time (min)

(None, 8, 96)

(None, 8..5)
Argonne 4
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Worth the cost?

A comparison with baseline ML methods

M..uLl NAS-LSTM XGBoost | Random Fores 140 LSTM-120

0.985 W 1,066 ).823 09223 0002

(1.739

We compare the performance of the LSTM obtained by

DeepHyper against some baseline time-series forecasting
methods.

Linear/XGBoost/Random-forest methods are utilized within a

general non-autoregressive time-series prediction framework
without exogeneous inputs.

Xie, Jinyu, and Qian Wang. "Benchmark Machine Learning

. . - Approaches with Classical Time Series Approaches on the Blood A
15 Argonne Leadership Computing Facility Glucose Level Prediction Challenge.” KHD@ IJCALI. 2018. Argonne
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- Window-in and window-out
Science assessments predictions (8 week
windows). No feedback of
How well does the architecture accomplish our predictive task? OUtputs as Inputs.

500 1000 1500 1000 1500

Mode 3 Mode 4

I i s '
AT | U g W | . I AT
RIAWAL x. J Uiy |"'|| |"”P AW LLY
"\| — True | Il "Y' — True
Predicted T ' o Li Predicted

| 0 |
200 300 400 . 500 1000 1500 500 1000 1500

(a) NOAA-SST Training data forecast (b) NOAA-SST Testing data forecast

Forecasts can be seen to diverge as we get closer to 2018.
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Science assessments

How well does the architecture accomplish our predictive task?

Latitude

100 150 200 250 300 350
Longitude

100 150 200 250 300 350 50
Longitude

(a) NOAA (Truth) (b) HYCOM

HYCOM run using US Navy DoD Supercomputing
Resource Center (daily). 800 core-hours/day of forecast

on a Cray XC40.

CESM (for a 1920-2100) forecast required 17 million core-
hours on Yellowstone (NCAR HPC Resource) per
member of ensemble (30 members)

17 Argonne Leadership Computing Facility

W
h=]
=
=1
=l
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—

100 150 200 250 300 350
Longitude

100 150 200 250 300 350
Longitude

(c) CESM (d) POD-LSTM

Everything looks pretty OK in the eyeball norm.
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Science assessments

How well does the architecture accomplish our predictive task?

— Predicted - HYCOM — CESM — True — Predicted - HYCOM — CESM — T — Predicted - HYCOM m— CESM — True

75 75 75
Week Week Week

(a) -5 © latitude, 210 © longitude (b) +5 ° latitude, 250 © longitude (c) +10 © latitude, 230 ° longitude

TABLE I
RMSE BREAKDOWN (IN CELSIUS) FOR DIFFERENT FORECAST TECHNIQUES COMPARED AGAINST THE NAS-POD-LSTM FORECASTS BETWEEN APRIL
5, 2015, AND JUNE 24, 2018, 1IN THE EASTERN PACIFIC REGION (BETWEEN -10 TO +10 DEGREES LATITUDE AND 200 TO 250 DEGREES LONGITUDE).
THE PROPOSED EMULATOR MATCHES THE ACCURACY OF THE PROCESS-BASED MODELS FOR THIS PARTICULAR METRIC AND ASSESSMENT.

RMSE (®Celsius)
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8
Predicted 0.62 0.63 0.64 0.66 0.63 0.66 0.69 0.65
CESM 1.88 1.87 1.83 1.85 1.86 1.87 1.86 1.83
HYCOM 0.99 0.99 1.03 1.04 1.02 1.05 1.03 1.05

Recurrent neural architecture search for
18 Argonne Leadership Computing Facility geophysical emulation, SC 2020. Argonne A
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NASA DayMet - Daily maximum temperature

s EARTHDATA Other DAACS v 2 Feedback

%) ORNL DAAC

¥ DISTRIBUTED ACTIVE ARCHIVE CENTER
R FORBIOGEOCHEMICAL DYNAMICS

About Us Get Data Submit Data Tools Resources Help

DAAC Home = Get Dat; jects > Daymet > Landing pag

Daymet: D Surface Weather Data on a 1-km Grid for North
America, Version 3

Overview

Dol
Version 3.4
Project

. Published 2016-07-15
Updated
Usage

Citations

Spatial Coverage

Bounding rectangle

N: 83.00 | S: 14.00 m W: -179.00

Temporal Coverage

1980-01-01 to 2019-12-31

Description

19 Argonne Leadership Computing Facility

Daytime maximum temperature. Originally
available on 1 km? grid for North America.

Coarsened to 10km?- To be used for testing
architecture (not trained framework!)

Generated by a mix of remote sensing,
experimental measurement and numerical
simulations.

87 GB of data per year — 2015,2016,2017.

Also have precipitation/daylight (looking into that
for future work)

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328 Argonne A
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Science assessments

Using the same architecture on a different data set (with
retraining)

Weekly average predictions
2016-2018

POD Coefficients
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=
=
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=

2500
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—2500

Predicted

—2500

Forecast test

. —— Truth ﬂ[‘.‘

A
Hopn st T L""’ L’W t A

|L'.,\ ,'r, J'rT/., 1

—2500

ORNL DayMET dataset (8000x8000) per day
for 40 years (temperature, daylight, rainfall)

0 100 200 300 400 500 00 700
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NAS UQ - Primer: Bayesian neural networks

A) Single Bayesian neuron B) Bayesian neural network

weight / bias distributions

outputs ' 9
P XS

22N

Exploration of posterior (for example with HMC) is infeasible so Hernandez-Lobato, José Miguel,
variational inference with the KL-divergence distance is used, assuming and Ryan Adams, ICML. PMLR,
each weight is unimodal Gaussian (so mean and variance are 2015.

parameters) : i
Image credit: Hase et al., Chemical

21 Argonne Leadership Computing Facility Science 10(8), 2019




NAS UQ - Primer: Monte Carlo dropout

H--

pE(x,©) 7 N

An approximate Monte-Carlo sampling of the posterior can be
performed, easily, by randomly switching off neurons during multiple Srivastava et al., JIMLR, 15 (1), 1929-1958
inferences.
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NAS UQ - Primer: Deep ensembles

Deep Ensembles

Combine an ensemble of networks

1 hb
Mo = ﬂ Z fty

1=
1 A
o (f:rf —+ ;rf) — ;.E-i

“:E_

=1

ep Ensamibkes, MIFS 2017, Halap Lakshaminarayanan et a

‘Several,r_nodels train_ed from different initializations and each model is a Lakshminarayanan B, Pritzel A, Blundell C.
sample’ in hypothesis space. Apparently outperforms Monte-Carlo NeurlPS 2017 Dec 4 (pp. 6405-6416)
dropout and probabilistic backpropagation. : :
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Deep ensembles based UQ with DeepHyper (AutoDEUQ)

: Search for

the Re ’Search for

best the best Search for the

topology 1 Dyper-parameters best weights

(B)

With Romain Egele, Krishnan Raghavan, Bethany Lusch,
Prasanna Balaprakash

24  Argonne Leadership Computing Facility



AutoDEUQ algorithm (joint HPS and NAS)

Algorithm 1: AgE

inputs : P: population size, S: sample size, W: workers

output: highest-accuracy model in history

/* Initialization

population < create_queue(P) // Alloc empty Q of size P

fori <+ 1to W do
model.h, + random_point (H,)
submit_evaluation(model) // Nonblocking

end

/* Main loop

while not done do

// Query results

results + get_finished_evaluations ()

if [results| > 0 then

population.push (results) // Aging population

// Generate architecture configs

for i « 1to |results| do

if |population| = P then
sample + random_sample (population,S)
parent < select_parent (sample)
child.h, + mutate(parent.h,)

else

| child.hs + random_point (H,)

end

submit_evaluation(child) // Nonblocking

end

end

end

Argonne Leadership Computing Facility

Modify evolutionary search to also identify combinations
of hyperparameters with architectures

Key idea: to account for

epistemic uncertainty and probabilistic output layer to
handle aleatoric uncertainty

Cluster 1

> 0] € > 02 i€ 03 i
1 [} 1 ! ] :

42 H3

For handling complex likelihoods in regression — need to
account for probabilistic layers in the output




ML Regression benchmarks

Dataset

PBP MC-Dropout Deep

hoston

concrete

energy

kin8nm
navalpropulsion
powerplant
protein

wine

yacht
yvearprediction

Output likelihood
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Ensemble

NLL
Hyper
Ensemble

AutoDEUQ
Greedy

= lDF._*, Peo (U n | Xn } ==

AutoDEUQ
Top-K

PBP

log o5 (x

9

RMSE
Hyper
Ensemble
2,15
4,09
0,9
6,80
-3.03
5,24
21,12
1.92
(.48
7,44

Deep
Ensemble

AutoDEUQ

MC-Dropout Greedy

)

AutoDEUQ
Top-K
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Autoencoder search (epistemic only)

The best 100 architectures from a set of 10 neural
architecture searches (128 nodes each, 3 hours of
walltime = 3840 node hours) may be used to
perform ensemble UQ.

NAS based UQ superior for science data? Digging
underway!

27 Argonne Leadership Computing Facility

Deep ensembles

Reconstructions

Method Test MAE Test MSE Test NLL

Deep ensembles

Weight averaging 0.346
0100
Deephyper 0.111 -1.782




Autoencoder search (epistemic only)

The best 100 architectures from a set of 10 neural
architecture searches (128 nodes each, 3 hours of
walltime = 3840 node hours) may be used to
perform ensemble UQ.

NAS based UQ superior for science data? Digging
underway!

28 Argonne Leadership Computing Facility

Deep ensembles

1 = 31}
: l 25
< H* 0
10
5
B 10 an a 40 5 &0
X

Standard deviations

Method Test MAE Test MSE Test NLL

Deep ensembles

Weight averaging 0.346
0100
Deephyper 0.111 -1.782
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