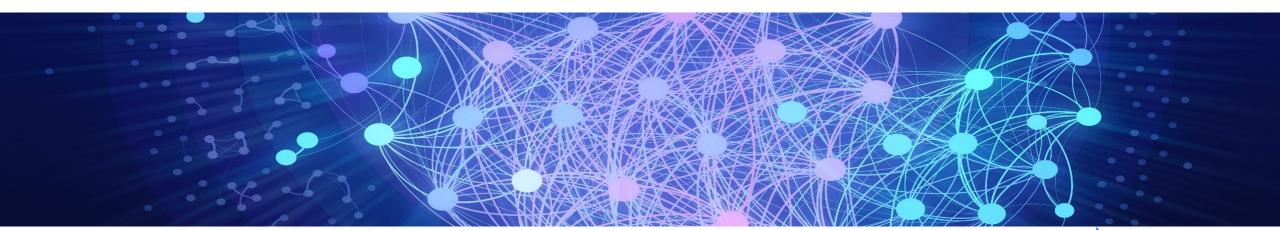
Automated Wing in Tank Inspection using Al:

Progress on a Proof of Concept project, towards Robotics and Al applied to Industrial Inspection

3rd Dec 2020 - iTalk

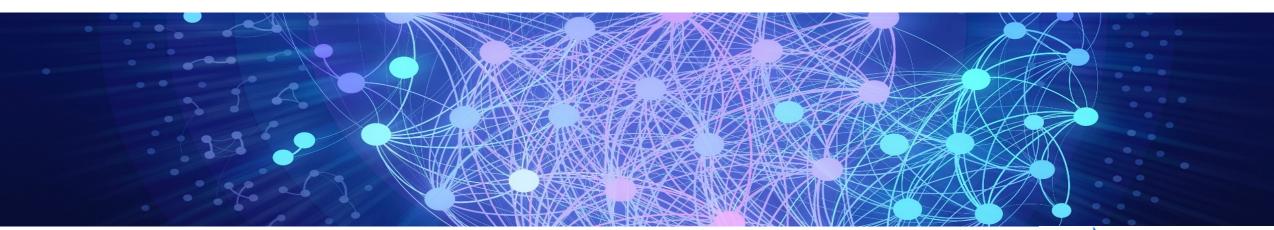
STFC-Hartree Centre

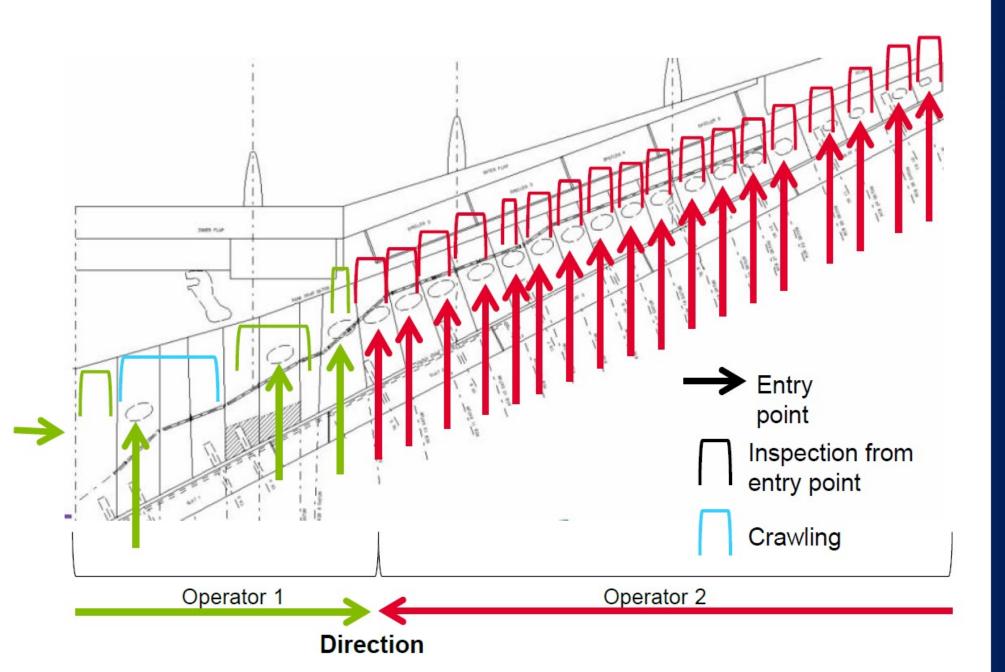
Jony Castagna



Overview

- The Challenge
- Phase I: the supervised learning approach
- Phase II: use of a DMU CAD model with semi-supervised approach
- Phase III: the unsupervised learning approach
- Conclusions and Future work





Challenge:

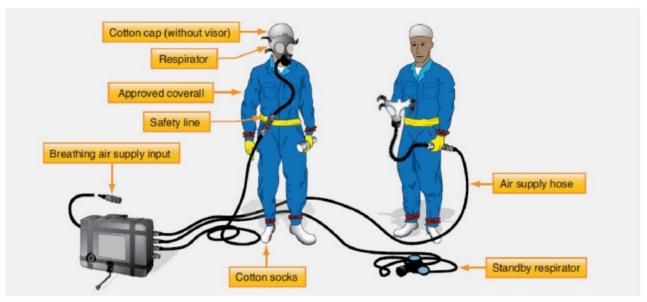
Wing Tank Inspection Process

Visual quality inspection occurs at multiple build stages

Two operators per shift per wing for the A320 aircraft

Snags marked and recorded on paper

Opportunity to improve traceability with digital records



Challenge:

In service access to wet tanks

Beyond inspection during wing assembly the presence of fuel / fumes in the FAL and in service presents additional demands and risks

Solution needed that's suitable for cost effective deployment across range of airlines and locations



Solution?

Robotic Manipulator Arms

Use of snake arm or other robots to secure access to confined spaces

Need to be able to safely access a range of spaces, carry an end effector load, avoid collisions, track location, recover from failure etc

Solution?

Deep Learning for Anomaly Detection

With a source of in tank images AI /DL techniques could be used to automatically identify areas for closer inspection

How can we train such models, and be confident that an unpredictable array of snags can be detected?

Main challenges with a Deep Learning approach

- The number of data (images) with anomalies is usually very small (1 every 1M images ?)
- The type/shape of an anomaly can be very different (basically any shape different from a clean bay)
- Lack of data (clean and with anomalies)



Phase I: the supervised learning approach

- Restrict focus on a specific bay section
- Collect images of clean and anomaly bay (AIRBUS)
- Apply a small Neural Network (lack of data limits the deep of the NN)



Target imaging zone in bay 10-11

Airbus CTO:

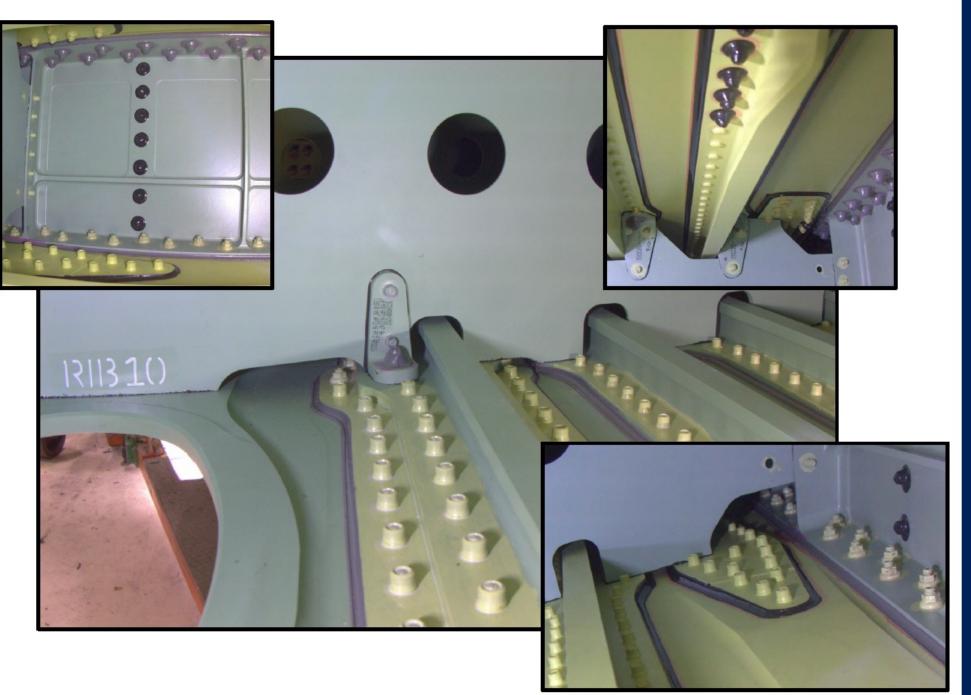
Proof of Concept (PoC) Incubator

Automated Wing Tank Inspection

- Remote Visual Inspection
- Automated Defect Detection

Airbus team from CTO, Manufacturing, IM / IT & Engineering

A320 wing Bay 10-11 test case – forward of man hole cover



Training image collection on the production line

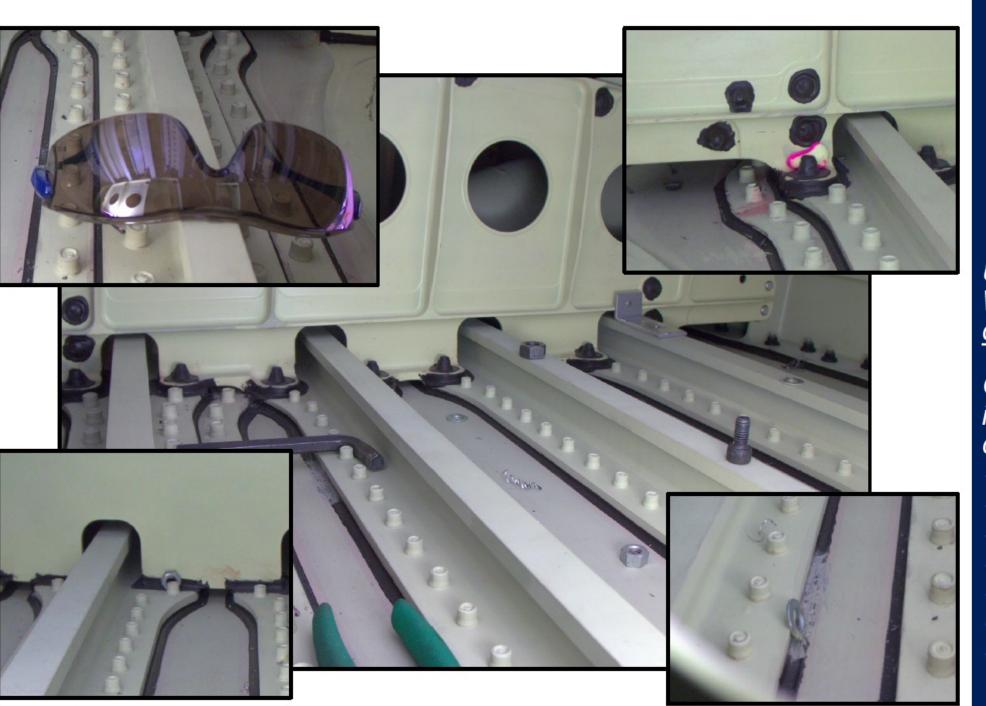
Single Aisle Stage 1A where no systems or equipment present

- > 40 wings
- 950 images

Included port and starboard wings and different variants:

- A320 / A321
- CEO / NEO

<u>Provides anomaly free</u> <u>image set</u>

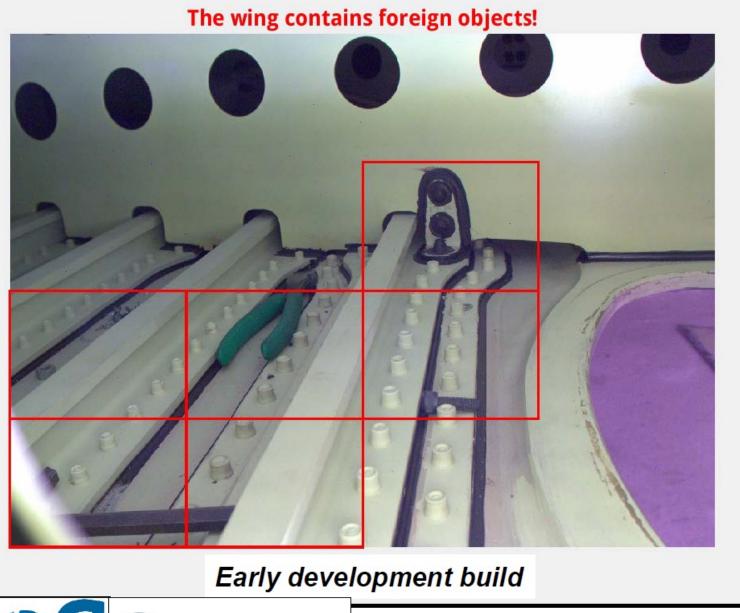


Defect Training images in ProtoSpace

Use of ProtoSpace Wing In Filton to <u>stage</u> <u>defect cases</u>

Generation of >280 images with FO – lower cover:

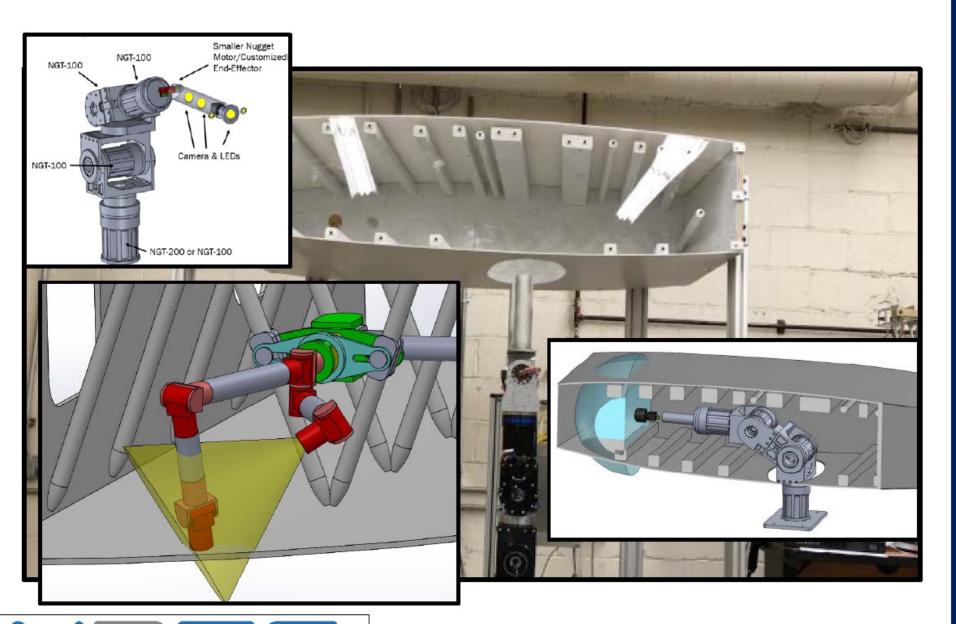
- Damaged sealant
- Nuts and bolts
- Misc Tools
- Swarf
- Safety glasses
- Wire (crack/scratch)
- Etc



Deep Learning model prototype: ATOS/STFC

Preliminary Training of a Convolutional Neural Network based on Alexnet:

- Model creation with >1000 images
- Train/validate 80/20
- Testing set on >50 images



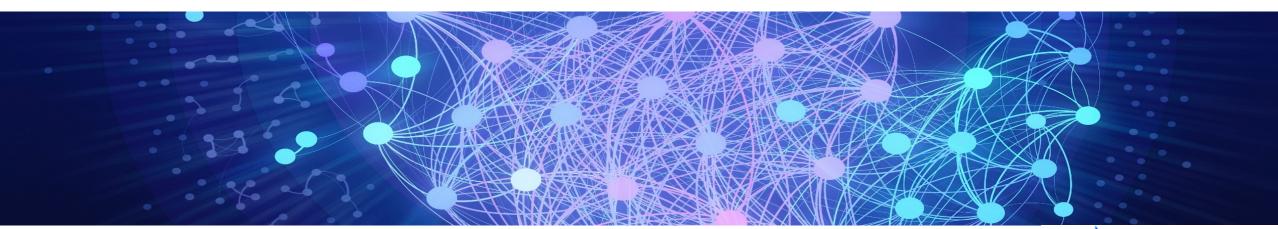
Modular light weight robot arm with NREC @ Carnegie Mellon

Preliminary modular design concepts under development:

- Simulation
- Configuration
- Actuators
- Link arms
- End effectors

Resume from Phase I

- Preliminary results suggest that a Deep Learning approach has a certain potential
- However, it cannot be based on a supervised learning!
- We need a large amount of data!



Phase II: use of a DMU CAD model with semi-supervised learning approach

- Use of Digital Mock Up (DMU) CAD model to generate large amount of data
- AIRBUS has (of course) a well defined CAD model of the wing bay
- However, details (like bolts/sealant/etc.) are missing
- Can we detect defects using a semi-supervised approach?

AIRBUS DMU CAD model

DMU

Produce simple render

Generate video animation

Extract images from video frames

Improve render quality (Greater photo-realism - Materials, resolution)

Additional details into CAD (smaller defects e.g. bolts)

Rendering

Tested different tools to find good compromise between:

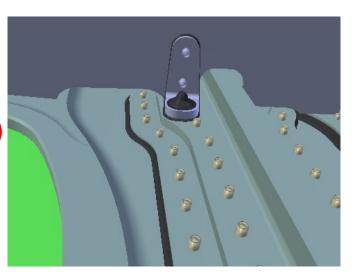
- Costs
- Quality
- Speed

Autodesk Fusion 360

- High quality
- Expensive
- Very slow (10min per image)

Blender

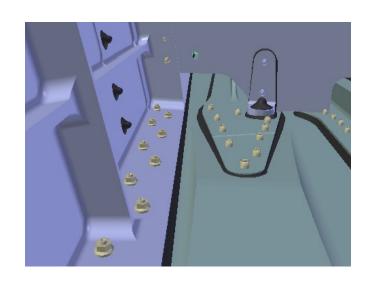
- Medium quality
- Free
- Slow (2-3 min per image)

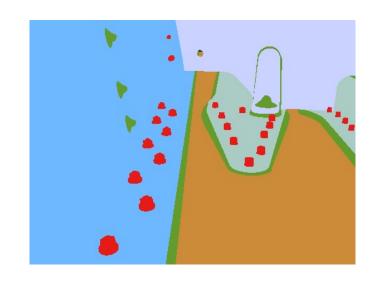


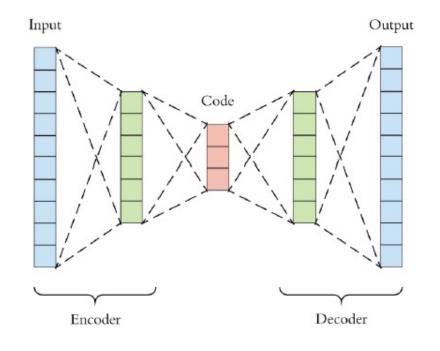
Blender

- Low quality
- Free
- Fast (3s per image)

The semi-supervised learning approach





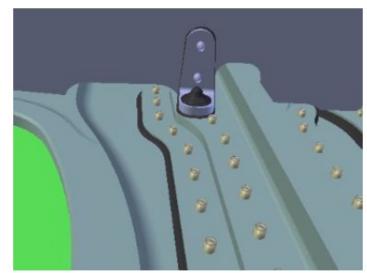


Rendered image

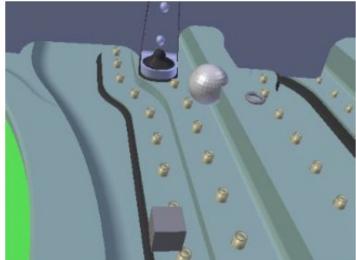
Corresponding mask

Autoencoder

Inference on Synthetic Defects



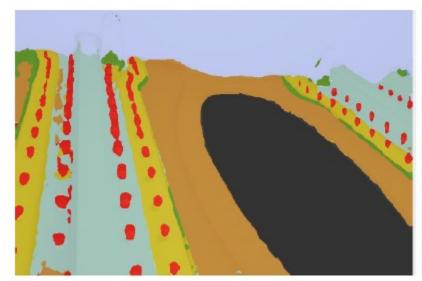
a) No anomalies



b) Synthetic anomalies

c) Anomaly detection

Inference on Real Images



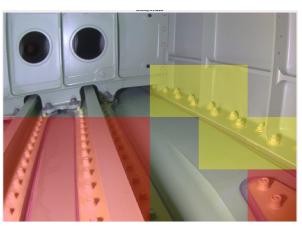
Very poor results when inferred on the real images!

Synthetic image

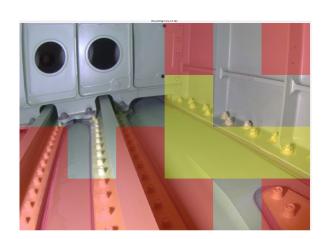
Real image

Something in missing...

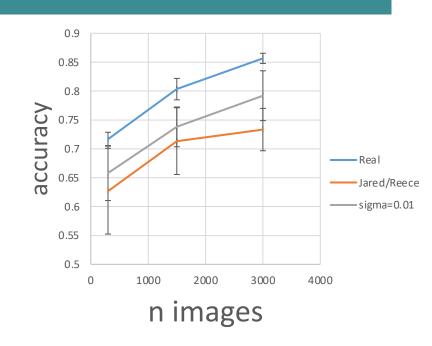
Let's reduce the problem to a classification of bolts:

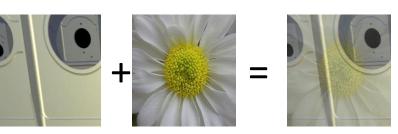


Correct results



Best results!





Adding a false background helps!

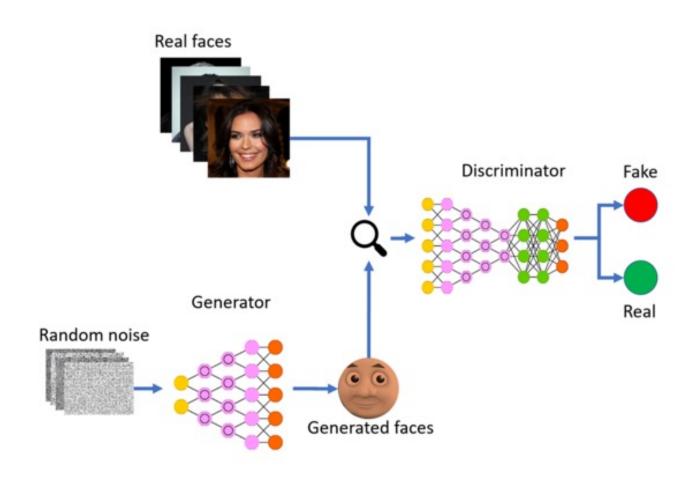
Resume Phase II

- The DMU model could be used to generate large amount of data, but need to be augmented with details
- Semi-supervised learning (semantic segmentation) is robust for defect detection
- However, there is a gap between the DMU model and the real images which lead to poor results on real images
- This gap is confirmed also via a simpler classification problem on bolts

Phase III: the unsupervised learning approach

- Can we use Generative Adversarial Networks (GANs) to generate bay images?
- StyleGAN is a leading architecture in high quality generated images
- GANs can be used for anomaly detection (AnoGAN)
- Improved version of AnoGAN via Encoder like in fast-AnoGAN => AStyleGAN

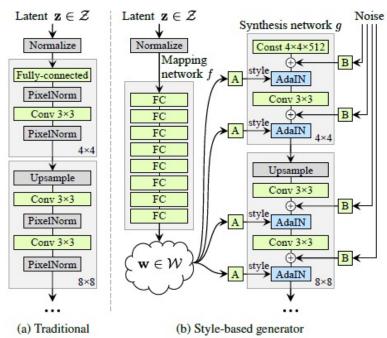
What are GANs?



The generator and discriminator compete each other and eventual achieve a Nash equilibrium

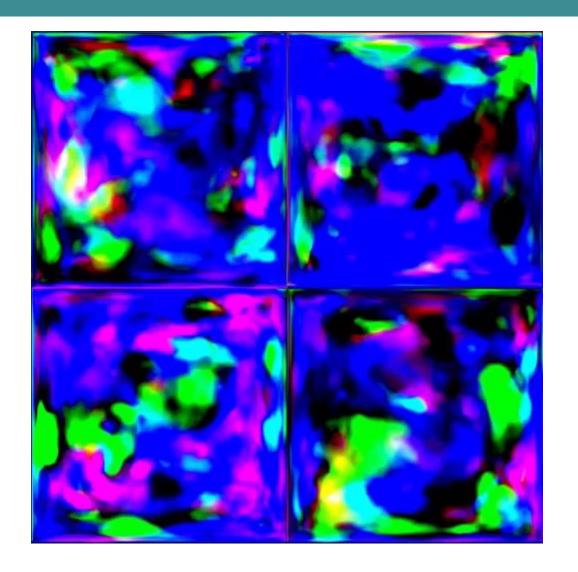
What is StyleGAN?





https://github.com/NVlabs/stylegan

Results of StyleGAN on a wing bay



Actually we use a variation of StyleGAN named MSG-StyleGAN

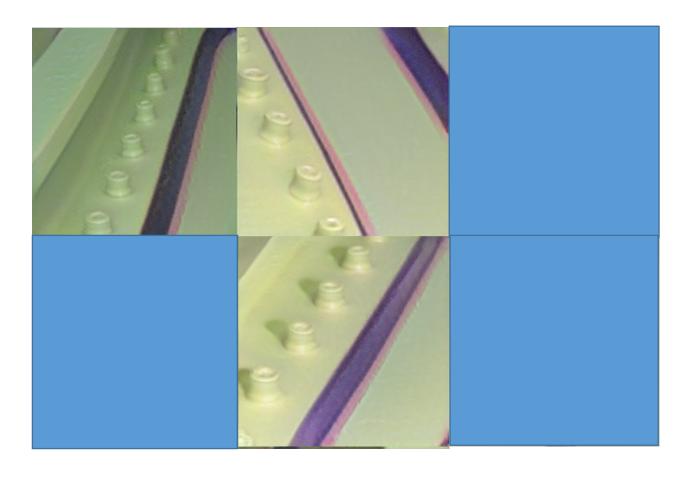
Quality of MSG-StyleGAN

The £1 competition... Which one are fake?

1	2	3
4	5	6

Quality of MSG-StyleGAN

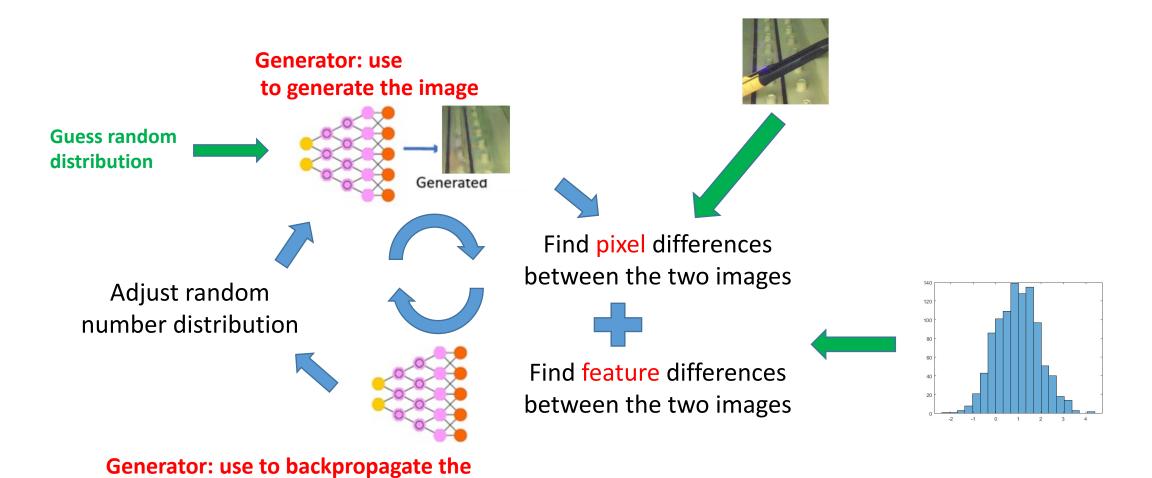
These are fake! But no worry, let's forget the £1...



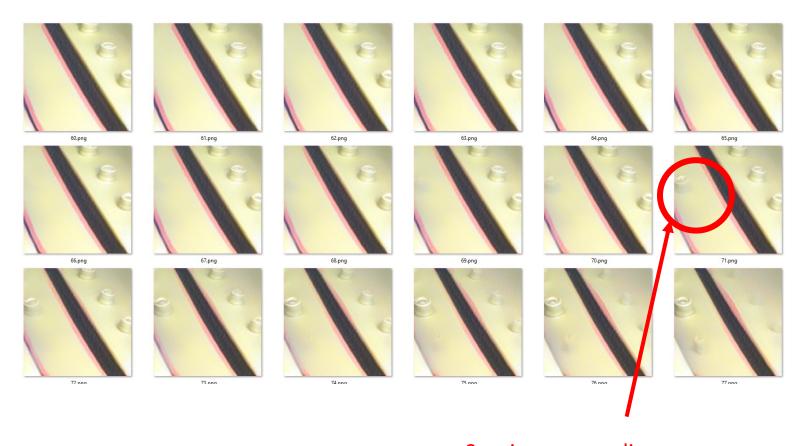
1	2	3
4	5	6

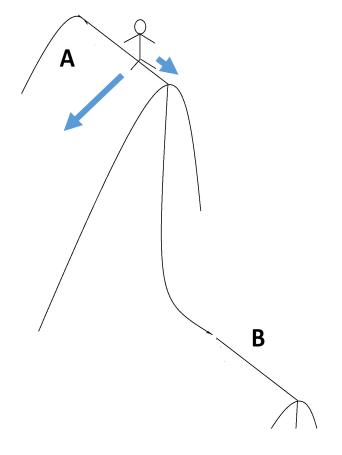
How does AnoGAN works?

total differences (weights are frozen!)



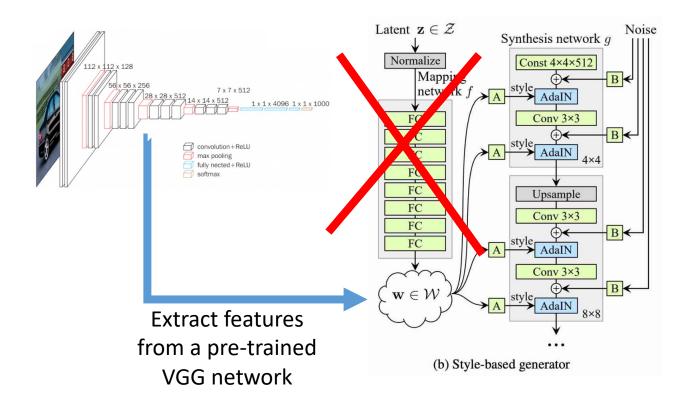
Main issue: the morphology

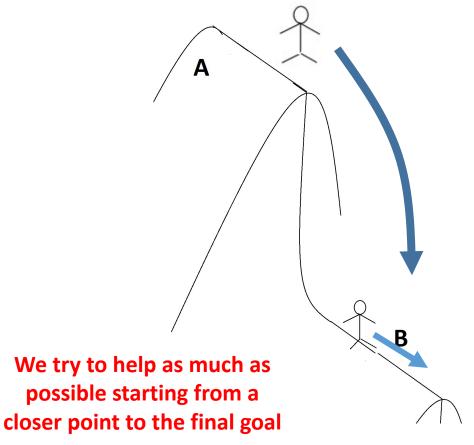




Spurious anomalies can occur during the latent research space!

Improvements: add and Encoder like in fast-AnoGAN





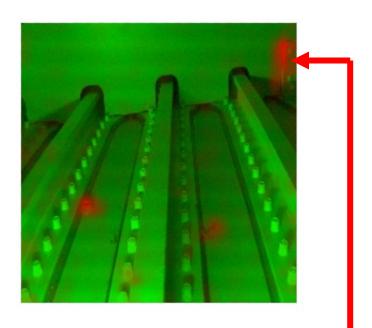
AStyleGAN: Anomaly StyleGAN

differences real generated

Results obtained training the GAN with 375 images (augmented to 10k) only!
Still very small for a usual GAN training...

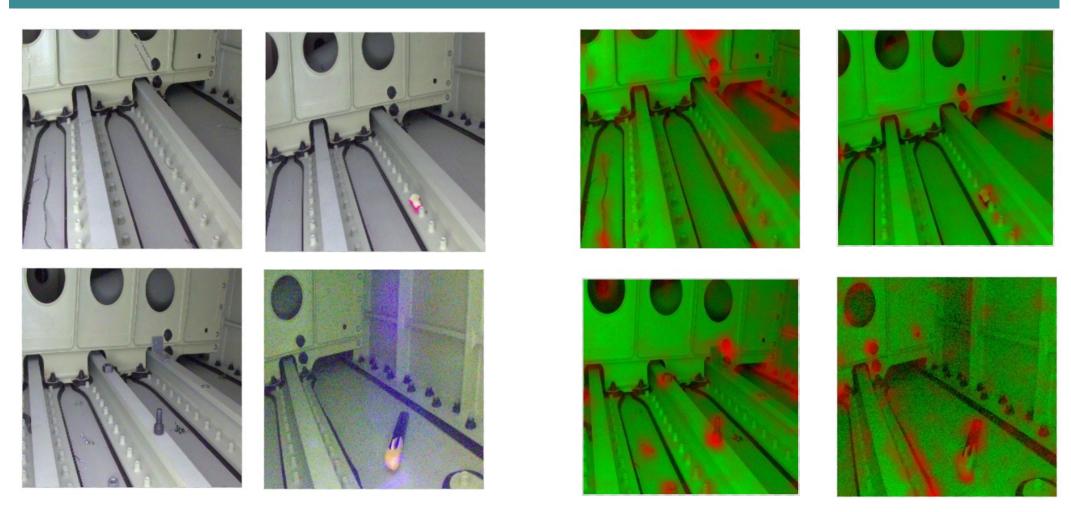
Technology Facilities Council

AStyleGAN: Anomaly StyleGAN



StyleGAN has been mainly developed for a central image subject. Poor reconstruction on the side ends up in False Positives

Other defects examples

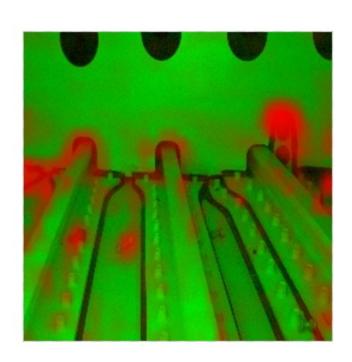


The training dataset does NOT contain any of this images and only a very small proportion of clean Protospace images

Distortions due to local minima

Real image

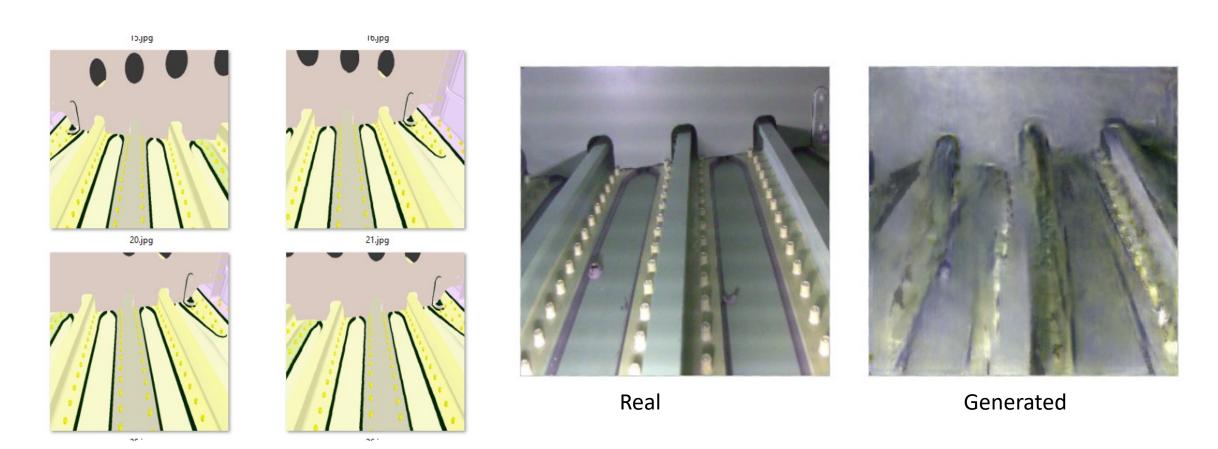
Generated image



Differences

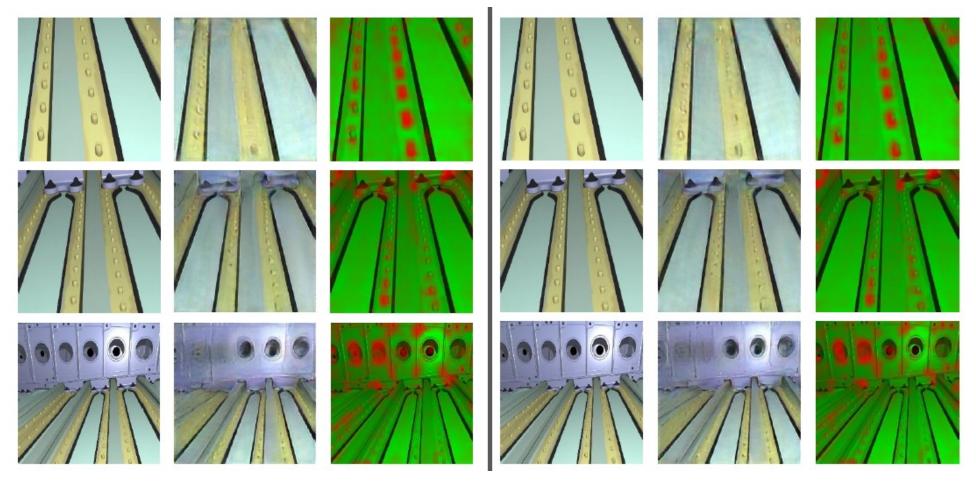
The encoder may start from a very wrong location!

Training with synthetic images



10k synthetic images obtained via Blender using different colours

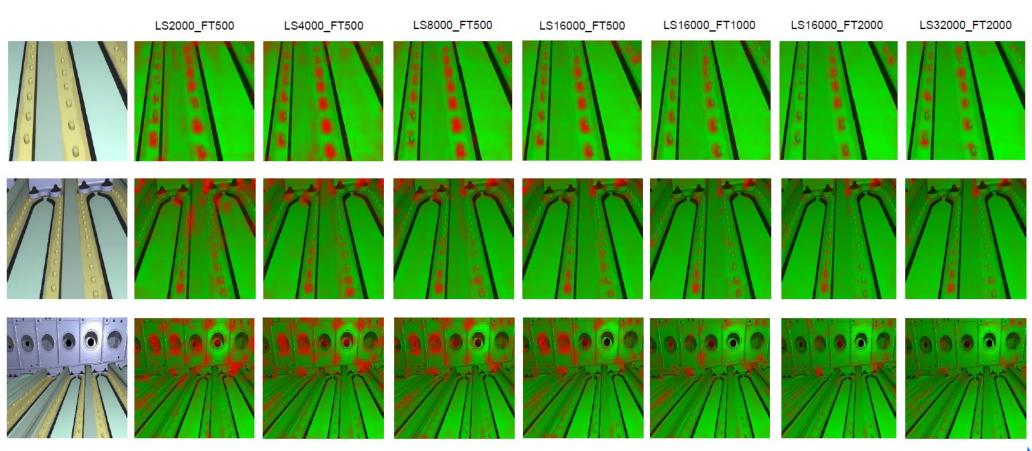
Inference on synthetic images (from Pablo Bermell)



It could be used as augmenter of the synthetic DMU model

Inference on synthetic images (from Pablo Bermell)

False positives - impact of iterations, (LS: latent space, FT: fine tuning)



Resume Phase III

- Unsupervised learning can tackle the anomaly detection based on clean bay images only
- It is agnostic to the defect and does not suffer of class imbalance data
- Generative NN are promising in their capability of reproducing real images
- AStyleGAN shows good preliminary results but still far for industrial applications

Conclusion and Future Work (I)

- We explored different methodology to tackle the challenging anomaly detection in a AIRBUS A320 Wing Bay 10-11 scenario
- The challenge is that anomalies are rare and can be of any shape
- Generative NN are promising in their capability of reproducing real images
- AStyleGAN is agnostic to the defect and does not need images with anomalies. Preliminary results are good but still far for industrial applications
- AStyleGAN is easily transferable to other bay/sections. You "just" need a lot of data!

Conclusion and Future Work (II)

- To train using a larger dataset
- Improve the Encoder to have a better reconstruction and avoid False
 Positives and reduce the detection speed (currently ~2 min)
- To remove the fine tuning of AStyleGAN which could lead to False Negatives!

Any questions?

