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I Focus
The intention of MLl is to foster and illustrate the adoption of ML methods

for . The forum will consist of a robust and
open dialog between industry, research institutions, vendors, and academia
to strengthen the technology transfer of ML methods to industrial needs.
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I Discussion today

We provide high lights of the problem domains, specific to the Automotive Industry,
and discuss impacts and experiences of ML and data-sci .

1. Changing Landscape in Industry : Science, Engineering, Manufacturing

O We discuss the Automotive Industry
O We do not discuss Autonomous driving

Z. Adoption of ML and Data Science in Engineering/Manufacturing
O Enablers, Pressures and Opportunities

3. Use cases ... some examples from industry (Ford)
QO A mix of examples to show case the span of ML-Impact

4. Qutlook, Opportunities , Challenges
U Data
Q Robustness
Q Causality
O Cautions
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Changing Landscape in Science and Engineering

« We are in “The Fourth Paradigm”

e Science -- Engineering -- Manufacturing in industry
« Old vs New

« Manufacturing — Industry 4.0
- Labs of the Future

« High throughput research
« Looped Intelligence
« Continuous testing and Calibration

% | Greenfield Labs Research and Innovation Center 4
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I Data-Models-Compute ... progression to the 4th paradigm

Friedmann's Cosmic equations built upon
Einstein’'s Field Equations and generalizes
the expansion of the universe - physics-math

(d)z _ 8nGp N Ac?  kc? SRR
3 3 a? Navier Stokes ... cannot be solved

AnG 3p\  Ac? except for degenerate cases and

da
P —T<P + C_2> + 3 very simple geometries > DNS, LES Adapted from:

The Fourth Paradigm, Data-Intensive Scientific discovery
Tony Hey et.al

Copernicus, Keppler, Galileo,...

l Discovery based on observations. + SOC’s

l Maxwell, Einstein, Friedmann lTuring, Von Neumann, Moore’s Law

+ FPGA’s
1000+ 1650+ 040+ 2000+ . QC,...
Newton ENIaC
Have observations (data) Developed theory Developed Numerical solvers Have new compute
Developed new methods (data)

Needed solvers for more complex Needed better compute and better

Needed new instruments
numerical methods for speed Move to newer compute - QC

Needed theories for generalizations  problems
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I Science-Engineering & Manufacturing

l
Supplychaing g g,
£ Quadbum. Cheg? !

Struckures
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I Manufacturing: Industry 1.0 - 4.0

7 manut

-

— INNOVATION CYCLE - — INNOVATION CYCLE - — INNOVATION CYCLE - — INNOVATION CYCLE -
MONTHS TO YEARS WEEKS TO MONTHS HOURS TO WEEKS MINUTES TO DAYS

Data need
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I Accelerated discovery with Labs of the Future

LOOPED INTELLIGENCE
An autonomous ehemistry laboratory runs experimental cycles intended to yield useful products meleeules. In the cycle,

artificial intelligence models the experiment and designs a product eempound, robotic equipment runs the synthesis, and
Al evaluates the output; researchers {and product designers} interpret the data and adjust experimental/design models or

the goal definition as needed
S - J"h —

Goal refinement Cumpnun:l Evaluatmn Functional
Must have Large scale optimization dESIQI"& SﬁfﬂthESIS
A
\% a.
Understanding Experiment modeling Data input

(9M | ggiﬁonﬂeld Labs DReSriSr?r,\A?h and Innovation Center Adapted from: Connor Coley/Massachusetts Institute of Technolog)B
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OTA
<«

Pre-prod vehicles Launched Veh
— ﬁ Continuous learning post launch
o_o Continuous testing until launch
!
}
Data Engine !
}

Test DBs —_—) [——

On-prem

Cloud a @ /
- S~—
)

Service

: . ‘ I
Algorithms: —> Same model/s in tool chain | wy _i " ~ B f « D_ata_fe_edlo E’OI_ o I |||
Diagnostic B | i Hww o | :_ ______ |||
Prognostics by ks y ! :
+ Calibrations ! © |||
* Anomaly Quantifier 12—0 : |||
* Warning Systems R ' |||
« Analytics =101
- RCA o I
« DV support . Il
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I Adoption of ML and Data Science in Industry

3 key enablers for adoption

New sensing in vehicles and manufacturing

Perception, IoT, lloT (5G)
Audio, Language

Demands/Pressures for adoption

« Need for high throughput research = fast discovery
* Fresh look at high dimensional and/or complex problem domains
Need for high fidelity but fast surrogate models

« Automation 2 Autonomy, Control
« Vehicles
« Mobility
 Manufacturing
Robotics

« Asset Monitoring
Vehicles/Fleets
Manufacturing
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I Emerging technologies and a changing landscape

3- Pillars: 1. Connectivity + New Sensing, 2. Algorithms, 3. Compute

[TTTT]
m
O
c

[TTTT]

Connected: V2x, loT & (@)

Vision %

Audio .||||||||||||||

Connectivity +
New Sensing

Factory IlloT

Text

« Independent single- veh control
« Humanin the loop « Dependent multi- veh control

« Human may/may not be in the loop
» Heterogenous compute

« Homogenous on board compute
+ Onboard + V2x+ Edge+ Cloud+ new

® ®
« Onboard sensing |
sensing
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I Sensing = new information sources are indirect sensing

Sensing is

expanding
.Vision

Audio

Information is directly encoded in the sensed

o J parameter and is available for reconstruction
otion q q

Thermodynamic via a known direct transform.

Connected:
.V2x, loT

Physical
Structural
Electrical
Process

Context =y (4;)

Scene = ¢(u;)

Slow traffic = control actions ?
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I Vision in Manufacturing In situ error-proofing

Feature Distance
X+—»

* Stereo Camera

i ¥ N
F oo T ————

v
F e
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Connectivity and Al improve decisions under uncertainty through
continuous Learning and exploiting preview

Learn traffic patterns

Learn route preferences

Learn Destinations

Learn drive quality between nodes

Connectivity gives
¥ preview

Learn complex
system behavior/s

Al+Connectivity helps
better manage uncertainty

Ennnentivity with preview gives insight into stochastic events (traffic incidents).
Combination of Al and Connectivity allows better management of uncertainty with improved Risk Reward trade-off.

% | Greenfield Labs Research and Innovation Center 14
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Demands/Pressures

Q Fear of being left behind

O Industry must re-orient/adapt and choose carefully

O Industry must understand its data, adopt new tools, upskill and know where to apply ML.

O OTS solutions are typically NOT available for engineering problems = must create these

Q Drives the demand for Engineers and Scientists to be proficient in ML

Q There are many sellers of “false Al dreams” ... must carefully navigate between fact and
fiction. Companies/Start-ups with multi-mil$ valuations are selling “stuff” that used to be
commonplace. Hence, in house expertise is needed to separate fact from fiction.

% | Greenfield Labs Research and Innovation Center
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I High throughput research: targeted discovery vs chance

Accelerated Discovery will provide a foundation
for the Discovery-driven enterprise.

T cloud
workload
complexity

Data-driven Al-driven Discovery-driven

Business intelligence

Cognitive enterprise
Consumer-led innovation

Scientific method
Enterprise-led innovation

External and internal data

Network computing Al and automation Complex hybrid cloud workflows
Consumer-facing apps on public cloud Mission-critical workflows on cloud |

Dario Gill IBM
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I High dimensional,

Standard solvers - Slow Simulations

PINNs = Less data,
Interpretable, speed-up

complex problem domains

Sim time can take “days” for a single run per case

Curse of dimensionality = formally ... computational cost increases
with dimensionality of problem

Ex. Finite difference discretization with N points per dimension and d
dimensions requires compute over N¢ points

3-D PDE with 1000 points per dimension = 10003 x 64 bits ~ 8GB

RAM - doable on a high-end laptop

4-D PDE with 1000 points per dimension = 1000* x 64 bits ~ 8TB

Needs specialized nodes on HPC

5-D ... needs new compute

Images ... very high dimensional , MNIST 28x28 - 784 dimensional
input

¥

Data Driven Models, Surrogates, ROMS, PINNS, Hybrids

% | Greenfield Labs Research and Innovation Center 17
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I High dimensional, complex problem domains: Li-lon batteries

Negative Electrode Positive Electrode
de d de dc, 0 dc, .
— = —[Dy— (127 — = —[D,—]+ap(l -t
€n ar ax[Du Bx ] it fh.“ i‘+],J'.l. . €p ar ax[ P ix ] aF( )JJ’?
oD, ., 2k,RT dlnc, eparator o, dd,,  2k,RT dlinc,
o = — + 1~ = It —fp = + 1 -8)——=Kt
T ox M ax TTF T 710 g0k e 0.0 0T, "o T TTF PR
AL . g PR
— —| = i 9 — o =a
Ax Oy dx dnl Jn i {j{r-';___., P 26, RT {l B £+} 0 lrey s f{.‘} Ax P Ax pl'Jp
dcs 1 8([,  de dx F Ox de, 1 9 ey,
= ——|rbD dT, i T, — = —— s
ot r or " dr J'-:'.'-'Cp,x_ = —|d;7—/ |+ er."rr.lr..'.' e r2dr P dr
dt dx|  Ox
« @_EI@ _|.Q _|_Q +Q C ﬁ—ﬂiaE-FQ +Q +Q
£n [X3 At - fbr n fh’ ram.n rev.n ofn .IG,I" B.p dt = ax fl ax rim, rev,p ahim,p
D: diffusion coefficient 1 ‘
t,: transference coefficient Dischargey Charge

A: thermal conductivity
j: pore wall flux
Q: source terms

Discharge

R P
OcsSle © 0 OOSO
Separator | Positive Electrode

~— 7 ~
00 222 500

Charge O(:x)

OO0 ¢'6%e (000

Electlrolyte L Elcctltrolytc ~

Fick’s law of diffusion for spherical particles
conservation laws

Kirchhoff’'s and Ohm’s

Butler-Volmer kinetics

Fourier’s heat equation

Length scales:
X-direction: 100 um
Y-direction: 5 cm
500-1 aspect ratio

Cu Current Collector
Al Current Collector

Particle radius: 2-5 ym
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I High dimensional, complex problem domains

« Just to note, there are many such problems across several domains in Science and
Engineering.

« One fact that does stand out, and we will talk about this again, is the impact of these
complexities on purely data driven re-constructions.

« For systems with high degrees of Nonlinearity, a data driven reconstruction of the
system dynamic will typically require dense sampling across the domain of nonlinearity
requiring aprioriknowledge of the nonlinearities.

« Often such data will NOT be available, forcing a sparse representation and the use of
techniques such as:
« Compressed sensing
« Bandwidth extension
« and/or incremental learning from failures

c%);d | PGreenfleld Labs Research and Innovation Center 19
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I Automation - Control > Autonomy

Computer Science construct Optimal Control Construct

Neural Control Modern Control
ADAPT/OPTIMIZE

ADAPT/OPTIMAL
%, SENSE MODEL CONTROL  sump f .
‘ y= Cx X = ‘P(x; u, t) u= B(xr x*:]) ”w‘fé—

Re-TRAIN

l I AARATASA control U,

“. Controller|

== Obijective function Jt

REnv 5 qpPlant Observation Y,

Formal methods exist for MC, similar methods are being
explored (are needed) for NNC

Fore | ¢

imasges adapted from D. Silver notes



I Autonomy, Mobility, Robotics

FORD MEDIA CENTER =

News Multimedia Vehicles Mobility MediaKits People Contacts Lincoln Bronco

Home » News > Forc New Artificial Intelligence Company, In Drive For Aut

FORD INVESTS IN ARGO Al, A NEW ARTIFICIAL INTELLIGENCE
COMPANY, IN DRIVE FOR AUTONOMQUS VEHICLE LEADERSHIP

@

News Multimedia Vehicles Mobility MediaKits Peopls Contacts Lincoln Bronco

Home > News

AGILITY ROBOTICS TO SELL FIRST DIGIT ROBOTS TO FORD TO
ACCELERATE EXPLORATION OF COMMERCIAL VEHICLE
CUSTOMER APPLICATIONS

Always select fastest option
Congestion score: 1

SHOP ARTS

104 Drop + Pickup }.»ﬁ BEV Charger ] m{ Vehicle ]
& g ]

%'cd | Greenfield Labs Research and Innovation Center
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FORD MEDIA CENTER =

@ FORD MEDIA CENTER =

News Multimedia Vehicles Mobility MediaKits Peopla Contacts Lincoln Bronco

Home > News > No Bones About It: Ford Experiments With

NO BONES ABOUT IT: FORD EXPERIMENTS WITH FOUR
LEGGED ROBOTS, TO SCOUT FACTORIES, SAVING TIME,
MONEY

21



I Monitoring: shifting to a distributed paradigm

« E(TP, FP) Dynamically updating density estimates
+ C (exists) Monitor connected data to assess base model performance and drifts in ' - - - g
behavior and emerging trends
025
DB: Engineering/Quality ™~ 02

0.15r

|

01r

i - E (TP, FP) 2
« C (exists) ;11 l

DB: Warranty

« E(TP, FP)
i » C (exists)

DB: Dealers/Repairs

_ Updates to
~  engineering team

DB: Development

0.05¢

Shift AD threshold based

on new distribution %
Updated with batch data , shifting distributions
are very good indicators of evolving trends

A

OTA updates model and

thresholds

In use data from vehicle populations is used to
update AD feature distributions

Existence of other causal conditionals

Initial deploy

Initial deploy

v

€1
C2

C=|.| —» cause
Cn

/

(?T! / | Greenfield Labs Researcn ana innovaton Center £ > offect
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I Case studies ... some examples

e |

d Powertrain— Emissions Control

A Collision -- Vision systems and challenges
d Manufacturing — process control , Robotics
O Material Science — using images

A Charactering Sprays with Images

d Models (PINNS and Surrogates)

d Monitoring (OBD, vs AD&RUL)

Greenfield Labs Research and Innovation Center
Palo Alto, CA Dearborn, Mi
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I Diesel Particulate filter — process and constraints

» Diesel vehicles must trap soot in a filter > DPF.
» Filters have finite trapping capacity and must be periodically cleaned or “regenerated”.

* Active regeneration involves a targeted burning of the trapped soot by intrusively
elevating and maintaining the exhaust gas temperature in the range of 600°C - 700°C.

Formulate as an optimization problem, SAE-2019-01-0316

(msoot - m;oot) \

m —m:
] =8 X (neat +Jpurn) + (1 —8) X R X (500¢ soot)

+ (1 - 6) ><]Load X

Moot max Moot max
Where:
6=1, fOT, Moo = m;oot
6=0, otherwise

R(Msp0t, Mioor) IS the risk of not regenerating in current drive. mj,,; = f(D)is the optimal soot load as a

Soot Management and Penalties

with M. Hopka

o Excessive
nction o the drive D nsumcien ; so0t
\&I ction o the drive soot mass Regenerﬂtlﬂn Zone mass
L > >
i . IIIulstratic:nof C‘ostcrilteria f?rReg‘enerallion T Temperature iﬂGI'EEIEE
eal Look for Optimal tri 3
_j:eaIﬂJRegen poRleropTe e - UE' I:I'E'na“"l," TD!?E| fUEI
Jioad + Risk I Must Regenerate _.f
7 economy penalty
S /
o Ar Soot Loading Regime, * Regen Fuel Penalty (REP) > f(Regen Freq, Rgen duration). / f
@ can delay regeneration i . 3 i H
S * Regenerations also incur NO, penalty. 3 / IENPTREE !
& «  Traffic conditions and drive quality impact Regen Quality (RQ). L. — epm="
. g . . —
£ - *  Operating conditions during an active regen may become non- g‘l o LT
< . . . -
051 optimal resulting in aborts. ‘% |Low Fuel Specifid = - e | F;res ELre I?ss
- - -2
— Frequent aborts increase regeneration frequency. g soot burn rate -~ il uell penalty
— Frequent regeneration is not optimal - " v O i
o e . T — e e S s e
0 S S S Nt R S £ | wikipedia Region for Optimal regen scheduling
0 10 20 30 40 30 60 70 80 90 100 H =
Soot Load fraction of DPF capacity [%] Ch and Innovatlon Center

Ai

1 i ] L] |
Increasing Distance between Regens —



I Naive approach leads to short cycle regens

Drive: RIC -- Canton: Mi-Ave

e

42.38 W @ O vmn=0
. Ehrnouth . © Os=Vmphes20
i Livania t 20<Vmph<=40
42.36 = 40<Vmph<=60
42 34 WASREMUALE
4232 (353) Weslland Garden City NE
Canlon D {24
3 423 nd
E - tart
T 42.28 ' () ()
L4
42.26 g
Willow Bun Allen Pa
Alrport o
a224) A = Taylar
Van Surer - ) Datroit 5-_1:
42.22 Charter Ramulue oy Metrapolitan =)
Tawnship Wayne Co Uty
422 Belleville 77 ) Alrport

-83.55 -83.5 -83.45 -83.4 -83.35 -83.3 -83.25 -83.2

Longitude
o e
Soot Load (SL) at the start and end of each trip are shown
~

SLena > Slgtar > loading cycle | .
|

SL..q < SL.« = Regen cycle. (SLy,+ SL..q) = Soot load depleted g

% | Greenfield Labs Research and Innovation Center
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Fixed SL- Threshold based regen decisions can lead to short cycle regenerations

resulting in increased regeneration frequency.

The probability of getting a deep regen (> 70%) is a strong function of the route and the

likelihood of maintaining optimal regen conditions over the driven route.

Actual drives: Dearborn «<—» Canton on Mi-Ave, 1-94 (1 trip)
O O_O O

10 O— | Q

|_94 EUS-12§ —@— Trip init Us_12
9r 5 : . © | —@= TripEnd C
: : . O Regen Flag | :
_.- _._._,.*'_ aESE TR H_.— .-
8 o A | N CES oh®e -
g | o 1 278"
A g g8 eB" I
T ORI
el 3 L ST (N
— g ! § o lolgm x:
© : (2] ¢ c
S 51 A = g é@' FE
. N c .
o 51 _em s 88 g
S af & 28 E 55 8
%) i g z 2 2 z
2@ "9
3Sr g : o b
® Do :
a: Do :
2r : : L b
Distance between Regens &
1r : e g 7
’ 242 miles 23:"‘i'e§;t‘"§< 181 miles J
0 T 1 T 1 T
0 100 200 300 400 500

Total driven distance over 37 trips [miles]

600

Surrogates for fast sim and quantification



Drive information is an enabler toward more efficient regeneratlons

—@— Number of Regens
- Miles between Reg_ens

Full e

Distance between Regens increases with better
informed and smart regeneration decisions ‘/

DPF Soot Load

- Decision over a range of loads

Empty

- e \.-‘ _
\g/ Forced Irigger Number of Regen events decreased with better ~ — __

-

P> i informed and smart regeneration decisions T

Trigger on threshol/  Regeneration trigger | ki
o 29 So|e| |Sof &[4

Lonventional \ Increasing drive information, and decision flexibility
Fixed threshold trigger >

y / Lonnected and Smart \

@ Irigger regardless of

) ; Irigger on expected
ted d Vi Q e i it
expected drive guall yi re 17"}/ e :_;»-o : ﬁg # | ;%IZZZZZ; :ﬂr:es threshold based

|E\ Destination is known
Postpone decision to next <9
. t suitable drive < | Route with traffic known
SUCLCESS failure s
- SUCCESS wait :
P(successl_traf fic,drive, .'") # Smart decisions (Gaming, Reinforcement)
Forces arisk averse policy that Information allows flexibility in decision

still does not guarantee ra,  from a better understanding of Risk-
efficiency n, Meward trade-off /




with A. Rahimpour

I Vision based Collision avoidance with large animals.

Collisions with large animals such as deer and moose, etc. lead to
about 200 human deaths and $1.1 billion in property damage every year.

Backbone mAP @ Train time (s/iter) | Test time (s/iter) | Memory footprint | # parameters | Model size
loU=0.50 (GB)

ResNet50-FPN 0.99 0.1897 0.0467 (25FPS) 52 25 million 98 Mb
Mobilenet v2 0.79 0.1419 0.0269 3.5 3.5 million 14 Mb
(50FPS)
. . : CNN - Feature Classification
Preprocessing Segmentation ROI selection Extraction and Regression
Tracking | Logsgime="""
Predictingintent. - | orentatio
« Human intentis difficult Risk/intention | Pose

Trajectory

« Animalis even trickier prediction Motion

F | Greenfield Labs Researchand|

Palo Alto, CA Dearborn, Mi



with H. Maske

Manufacturing — Process control , Robotics, Error-proofing

Assembly, Precision tasks, Inspection

ey b,

rei nfproement learning

this i cone
ma iy Tines

o
B

i
ok
kLt

!
a . ,
.ﬁ-:?g-
:
| ek Y " "
¥ g
- "i‘l

&
]

7

T
o

Assembly line process .. Pallett routing

= Robots can assemble with repeated precision
= Grasping and manipulation tasks remain challenging
= Current end effectors are under-actuated systems
= Current robotics problems deal with parts designed for i
human assembly. @ WK
Process Decision

cemen
done
times.
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with Alemayehu Admasu, P Blanchard et.al

I Material Science — using images

= An image editing generative adversarial network, AttGAN, was implemented to generate realistic synthetic SEM images showing subtle effect of the varied synthesis
parameter of graphene additive %

= AttGAN avoids the large data requirement in GAN based design.

= Domain scientists can visualize and understand how changes in material attributes, synthesis/ processing conditions impact the sample microstructure features which in turn
determine its properties and thus can further be optimized

» Needs fast imaging, SEM/FIB images, 2D vs 3D, defining structure level information is tricky

= Need to include physics based constraints

Train ‘ Attribute Classification Constraint ‘ #synthetic image

il I prediction for 0.025%
{ e ——
b —]

Gec L l; :

#real image

o — real | fake for 0.01%

Shfre Adversarial Loss |

Gec

\

a Original Attributes

a &‘

b Desired Attributes

250 92‘)0 ?SIG 10‘00 12‘50 ]5‘00 I?IECI 20‘00
01%

weay U, ]\Ou ..“(.).,...che

1,..]/0.05%
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with Hongjiang Li, et.al

I Charactering Sprays with Images

Class A: No collapse

Tt | SsEied L2bs

Class B: Spray collapse, and transition

Obijective: Injector nozzle design and

Normally = visual + CFD sims

« Visual process too slow to keep up with fast imaging
* Prone to bias »>based on SME experience

New =2 use CNN’s

Research and Innovation Center
Dearborn, Mi

« Major speed up in analysis

« Consistent and highly accurate and quantifiable results

« Transfer to other sprays/injectors

« Can further map to in-cylinder combustion performance
measures and integrate into inverse design



I Models (PINNS and Surrogates)

A Data Need

Information

ML + Have data
v Have little or no knowledge of
system behavior

v Interpretability is not criti¢al

Stick with existing good and

with C. Rackauckas, A. Edelman -(MIT),
K. Balakrishnan (Ford)

Use fundamental properties:

Universal approximation property of NNets =>given enough layers a NN model can
approximate any nonlinear function to within e > good when nonlinearities are not
known apriori.

o yuL(x) =03 (W3 * oy (W, *01(W1x))) > eg. a 3 layer network, NN’s are
function approximations: R" - R™

£
2
° o ° ?:eDrmo ide O Differential equations are compact ways of specifying arbitrary nonlinear transforms
> o - . . . .
& structure o Aero-acoustics by _mathle.matlcally encodllng. prior structural assumptions -> good when
3 o Rigid body dynamics nonlinearities are known apriori 2 x = @(x,u, t)
> o Fluid Surface interactions < Both are differentiable
= o Electromagnetics )
% o Non equilibrium — Kinetics
'8 o Optics
£ o Structural Mechanics
o o Materials/DFT
2 Complexity
E >
¥ Know model structure Include domain knowledge in ML : Scientific ML
v" Models are complex or computationally intensive
v' Have data: experimental + Simulations N » ’
eural O/P-DE’s
v Interpretability is essential v v
1. NN architectures with activations as DiffEqs ° %’W( o)
2. NN architectures with some layers as ODE’s X et = St
i i i . . ) o Know some structure, can decouple
Koopman dynamics to learn time evolution 3. ODE'’s are defined with NN embeddings e - ML Solion
e ———_ ] il oon 4. Cost functions on ODE’s can be NNets %o = oty - known
e a .Eo e a Q : B &93%1 o Impute missing term
pred v gtv error v X = (p(x) + fML(x)
0.5 05 002 o Stochastic Diff Eqs
S 4 .E el S B '& oo I ' & E“ o0 Navier-Stokes is HARD.... solutions are attempted by B dx = u(x,0,t)dt + o(x,6,t)dW;
pred p otp ervor p quasi-linearizing the convection term as: %M o SDE'’s with jump discontinuity
e o s L L 0o (u-Vu=ypup,t)Vu E“ + (u- Vju—rViu = e+ e Filippov: x = sign(t)
REE R PR &_'o.uz Instead approximate "” by NNet ... Ve Comicion Difion  laic el o Partial Diff Eq classes

% | Greenfield Labs Research and Innovation Center
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NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations, to appear in arXiv



with H.Shui

I Anomaly Detection: Use ML for multivariate problems

T

g5 eror distribution
: representing faulty

DATA ACQUISITION SIGNAL PROCESSING FEATURE EXTRACTION | bahavior

[$)]

o
&l
T

error distribution |
representing faulty | =
bahavior 2 IE

SENSOR 45k

current error
4 distribution

Considance Value
2

EMBEDDED

output error in region 1

SIGNAL3 SIGNAL2  SIGNAL1

error distribution >
2.5 - representing
normal behavior

NORMAL
BEHAVIOR

RECENT ! ! ! ! !
BEHAVIOR -5 -4 -3 -2 -1 0 1 2 3
output error in region 2

Control Strategy &
Decision-Making  Parts tested at production may not provide

adequate indications of impending in-use failure

COMPARISON - Defective parts in an assembly may go un-noticed
VISULIZATION PERFORMANCE PREDICTION HEALTH ASSESSMENT « Can we isolate these “problem child's” at birth ?

p— « Parts will degrade differently from usage
J ' variations.  Several populations with varying

, degradation patterns will evolve.

i _ H - Faulty data is sparse.
-FOkTheesheld ‘  What is the scope of domain transfer between
L problems?

Degradation FDI, AD, RUL * Do contrastive learning approaches work beyond

simple examples.
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I On-Board Diagnostics (OBD)with future rule making

Future rules are an uncertain
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Isolating failed parts is easy (most of ML based AD today), isolating functional parts with marginal
deterioration and multiple dependencies ... not so easy
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Outlook, Opportunities and Challenges

Data

« How much data and how to get it optimally
« The data trap: “too much data with very little information”

Robustness

- Data drift/bias/coverage
 Models drift/bias

« Safety—in RL (exploration), neural controllers, controllers with
perception

Causality
« Generalization /Explainability

« UQ (of Data and Model)
« Embedding physics 2 PINNs, Hybrid methods

Cautions

Regulations, Safety and Guidance

¢ Deployment, CI-CD is now CI-CD-CM
Fact Vs Fiction

The “Al-Hammer” effect

%'cd | Greenfield Labs Research and Innovation Center
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Data: How much ? Costs? Manage, Label, Drift

OpenAl disbands its robotics research team OpenAl has disbanded its robotics team after years of research into machines that can learn to
VB July 2021 perform tasks like solving a Rubik’s Cube. Company cofounder Wojciech Zaremba quietly revealed on

Fora

a podcast hosted by startup Weights & Biases that OpenAl has shifted its focus to other domains,
where data is more readily available.
[”So it turns out that we can make a gigantic progress whenever we have access to data”. ]

Slightly misleading its not just data but LARGE DATA

|s data a good substitute for Physics ? Ignoring physics implies data must re-learn the system - Increased
data burden and all associated risks/errors.
Extracting full domain representation from data alone requires a data set with very dense representation -
which usually translates to aggregation of a lot of data with sparse representations
Data needing labeling (indirect sensing) are prone to noisy labels and impact learning !
Purely data driven models need to learn continuously (hence need new data) until full coverage of domain,
but by then system/domain may have drifted !

» Tesla trains FSD with 1.5PB -> building their own cluster 5760 A100 GPUs
Need an “intelligent” Data and Learning policy.

Greenfield Labs Research and Innovation Center Sls
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https://venturebeat.com/2019/10/15/openai-teaches-a-robotic-hand-to-solve-a-rubiks-cube/
https://www.youtube.com/watch?v=429QC4Yl-mA&t=1153s

SENSOR DATA ALGO DEPLOY PERFORMANCE

EEEEEEEEEEE

| Robustness (of ML models)

* Industrial and Engineering systems need guarantees and must be explainable!
» Design, Safety, Performance, ...

« ML methods, in general, lack formal approaches to understanding robustness, reliability, stability etc, but this may be changing !

« ML models rely on data, both data and models will have biases and can also drift 2 requires robustness checks at build as well as constant
monitoring post deployment. - Past performance is no guarantee of future results !!

« Corner cases (more frequent than edge) vs Edge cases (did not think of these but Pr () >0 = unknown unknowns).
* One may inadvertently transition into regions where Pr(Edge) increases!

» ASIL-B ©> < 1 Failure in 107 hours of driving. At ~ 60mph that is 6x108 miles of driving = 0.6B miles of driving. At 150K Miles vehicle useful life this is
equivalent to data from 4000 cars driven to full useful lite !!

» Currently Robustness implies massive amounts of testing, Simulation + Real life - different impacts depending on data class.
Corner or edge ?

Y = fm(x)
} Prest(X,y) # Prest(X,y ) SYNoPsys :
f i i Instrument Cluster hittp://bit ly/2teCCPK
Model (concept) shift [ Data shift ] Rear Lights Loss of Critical Data, Airbag
Both Side Failure, ASIL-B Inadvertent Deploy
Rear View Camera i — P gL Engine Management
L4 Na Valid Sensor Data T S e e N il sttt
(" B AsIL-B X ¥ - ASIL-Cto D
f 0O has shift Covariate shift Prior shift 2 [ ks ~
Ex. Degrading Battery ... the original [ Can also have Internal Independent variables Dependent variables Brake Lights |‘f__ L - / \ y  HeadLights
model is not valid anymore : s G Fadyra | ¥ . ﬁ\\ P, A Bohsidefailur
\_Pandemic shifts consumer sentiments Pl Iopome) oy e i ASILB \/ e Q__;_ % — i _}T_./_ ASIL-B
y | mﬂ - "":ié Radar Cruise Contro
H ift- Anitlock Braking / i 4 e g
Pirain(¥12) # Prog (vx) P(x) has shift P(y) has shift: Unintended Full Power Braking, I N ; :;“‘L"'B"‘ tpraking
Perain (%) = Prost () Pirain(X) # Prese (X) Pirain(¥) # Prest(¥) AsLA ——
Ex. Face recog trained mostly on young Ex. Train with 10% failures in sample, Active Suspension Vision ADAS Electric Power S?Z-Ql
faces but ignnring population mix when reality has 50% failures SUSPE \!n:":‘lﬁ:c:l\uls‘._ Incorrect Sensor Feedback Self-steering !

ASIL-Bto C ASIL-B ASIL-D



I Causality

* Recently there has been growing interest in the CS-ML community to address causality (Yoshua Bengio, Hinton, LeCunn), Others, Pearl Marcus, etc
have been asking for this.

* Understanding causality is critical in engineering/manufacturing systems

. Whatki)s the root cause ? Formally (statistically) ... determine if a change in a given “treatment” leads to a change in some outcome - sensitivity analysis (engineering
spea

*  Humans can only manage short chain credit assignments, for multivariate influences ... need compute
+  Extracting causality from pixel space is more difficult

» Discover causal relations by analyzing statistical properties of purely observational data
» Expert knowledge: collection of facts and heuristics about the system
* Granger causality: causality in time series data
» Structural Equation Modeling (SEM): what factors determined the variable value
» Casual Bayesian Network (CBN): what the probability of the variable changes when changing factors
» Causal calculus (‘Pearl’)

» Causality in the action space — recovering from changes
» Distributions (system representations) will change due to environmental pressures and/or direct intervention
* Good causal models allow Causal induction from interventions .. Can we estimate the intervention

Extract the largest subgraph with target attribute

X1

- @ @ Y2
:> X2 "// \\\\

~ P(W|Z,x1,%2,x3) Y1

X3
P(X1 X1 —
CBN == Ll B %5 P
X, Y are directly measured |:> P(X2) X2 — 1 Remove weak
W and Z are indirect/unmeasured variable / A Y1 P(Y2) connections
P(X3) X3 37
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I Cautions

e |

Regulations , Safety and Guidance
« Most ML models will not satisfy current regulatory obligations, typically requiring > 99.99 accuracies.
e Currently there is no mechanism to re-certify models that re-train on the fly.
« Blame assignment remains an open question
« Are simulators a good substitute, for real world testing ? This drives the need for “certifiably correct simulators”
« Synthetic data and Photo real vs PBR (Light Structure interactions)

Deployment, CI/CD is now CI/CD-CM

« ML SW when deployed requires continuous monitoring (CM) given that models and data will drift as we discussed

Fact and Fiction
« Buyers beware ! This drives the need for in-house expertise.
« Thereis an explosion of jargon that can be unnerving and quite tricky to navigate.
« Beware of “Dashboards” , front ends can be dangerous.

The “Al-Hammer” effect
« Everything looks like a nail, and it sells (surprisingly)
« QTS, pretrained networks are becoming commoditized, and there is a tendency to just train and re-train.
« Strict quality control of ML models, in an industrial setting, is still evolving

Greenfield Labs Research and Innovation Center
Palo Alto, CA Dearborn, Mi
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I Thank you for your time

This presentation had contributions from several people on the Core AI-ML-QC team in Ford Research

Alireza Rahimpour, Alemayehu Admasu, Huanyi Shui, Harshal Maske, Hongjiang Li, Kaushik Balakrishnan, Mike Hopka, Patrick Blanchard (and his
team) and the rest of the Core AI-ML-QC team.

Guidance and support from: John Schneider (Director ESCAIT), Dimitar Filev (Tech. Fellow)
We also included some results on PINNs from an ongoing project with MIT (Prof. Alan Edelman, Chris Rackuackas, et.al
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