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§ ML-driven physics simulations (2012 - )

§ ML-driven materials discovery & development (2015 - ) 

Scientific Machine Learning Applications

• Jiang et al., A Supervised Learning Framework for Arbitrary Lagrangian-Eulerian Simulations. ICMLA 2016.
• Jiang et al., A deep learning framework for mesh relaxation in arbitrary Lagrangian-Eulerian simulations. SPIE 2019.
• Jiang et al., Exploiting Spark for HPC Simulation Data: Taming the Ephemeral Data Explosion. HPC Asia 2020.

• Kailkhura et al., Reliable and explainable machine-learning methods for accelerated material discovery. npj Computational Materials 2019.
• Hiszpanski et al., Nanomaterials Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing 

Knowledge.  Journal of Chemical Information and Modeling 2020.
• Gallagher et al., Predicting Compressive Strength of Consolidated Molecular Solids Using Computer Vision and Deep Learning. Materials & 

Design 2020.
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Machine Learning for Materials Science

Success of LLNL and partner missions requires timely development 
and deployment of diverse materials 
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Materials discovery, development and 
deployment requires many iterations
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Two ways to help: (1) reducing the number of iterations and/or
(2) reducing time per iteration 
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1. Automated data collection

Optimizing the optimization loop
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2. Materials performance prediction

§ Inform synthesis protocol
§ Reduce iterations required 

to synthesize new materials

§ Identify candidate materials
§ Shorten iteration time by 

eliminating costly 
performance testing

Hiszpanski et al., Nanomaterials Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge. 
Journal of Chemical Information and Modeling 2020.

Gallagher et al., Predicting Compressive Strength of Consolidated Molecular Solids Using Computer Vision and Deep Learning. Materials & Design 2020.

A series of hypothesized 
materials 

are discovered for a target 
performance.

Materials are 
synthesized 

(with various 
parameters).

Feedstock 
material is 

made. 

Compression test 
results are 

obtained and 
compared to 
target values. 

Part is made and put under 
performance testing.

Material is characterized through 
SEM and performance is predicted. 

Instead of using costly processes to obtain performance metrics, we want to 
determine if there are faster methods to get to the same answer.
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Using Machine Learning to Predict Material 
Performance

A series of hypothesized 
materials 

are discovered for a target 
performance.

Materials are 
synthesized 

(with various 
parameters).

Feedstock 
material is 

made. 

Compression test 
results are 

obtained and 
compared to 
target values. 

Part is made and put under 
performance testing.

Material is characterized through 
SEM and performance is predicted. 

Instead of using costly processes to obtain performance metrics, we want to 
determine if there are faster methods to get to the same answer.

This is 
expensive

Can we do 
this instead?



8
LLNL-PRES-801721

15

20

25

30

Human Assessment Instrument Human + Instrument

%
 E

rr
or

Peak-stress Prediction Error for Random Forest (LOLO over 17 lots)

Performance baselines: human assessment & 
instrument measurements

XRD
Material Attributes:
• crystal structure
• particle size
• morphology
• surface area
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• surface texture
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• density
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Approaches: “Traditional” Computer Vision + ML
vs. End-to-end Deep Learning
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Sample preparation and data collection
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§ Regression (predict scalar peak-stress)

§ Goal is generalization to unseen lots
— Leave out an entire lot for evaluation
— Lot classification is a much easier problem

Experimental Setup & Results
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Explaining the results to a Materials Scientist
Part I

First: texture (BSIF) is 
more predictive of 
performance than 

local shape (BoVW).
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Second: BSIF is 
capturing something 

that current 
approaches do not.
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Explaining the results to a Materials Scientist
Part II

1. Our models rely on fine 
crystal attributes (pores and 
defects) smaller than 12x12 
pixels (~3x3 µm).

2. Differences in these fine 
crystal attributes correlate 
with real performance 
differences in material lots.
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30x30 filter
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§ Computer Vision/ML approach yields 24% improvement

§ Synthesizing more material lots improves performance
— Trend expected to continue in the short term

§ Deep Learning is the more powerful (lower bias) method
— The more powerful method is not always the best.
• Don’t underestimate variance!
• Don’t underestimate robustness and usability!

§ Fine crystal attributes are strong indicators of material strength
— Not adequately captured by current instruments or human assessment

Conclusions: Material Performance Prediction

Gallagher et al., Predicting Compressive Strength of Consolidated Molecular Solids Using 
Computer Vision and Deep Learning. Materials & Design 2020.
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§ Real-world data acquisition conditions
— SEM filament change (Zhong)

§ Material defect detection
— Detect, classify, and quantify CT anomalies 

(Loveland)

§ Uncertainty quantification
— Bayesian neural networks, deep ensembles, and 

uncertainty calibration (Zhang, Kailhura)

§ Explainable deep learning
— GAN-based image editing (Liu, Zhang, 

Kailkhura)
— Texture-based explanation (Mundhenk)

Material Performance Prediction: Ongoing Work

Acquisition conditions affect images

Defect identification in 3D CT data Contact: Brian Gallagher (bgallagher@llnl.gov)

mailto:bgallagher@llnl.gov
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