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U.S. Dept. Of Energy Labs are helping the
Manufacturing Industry Sector

= The U.S. manufacturing
sector uses approximately
25% of the nation’s energy.

Energy is a significant cost in
manufacturing

Source: DOE’s Advanced Manufacturing Office Multi-
Year Program Plan for Fiscal Years 2017 through 2021

Photo: courtesy of ArcelorMittal USA
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HPC4Mfg Program

We provide Scientific
Machine Learning (SciML)
tools and expertise to the
manufacturing community
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Manufacturing Industry Needs

= Rapid prediction of current or future process states.
= Integration of production data and simulation output.

= Informed decision-making for capital investment (sensors, simulation, experiments)

Photo: courtesy of Arconic Corporation Photo: courtesy of Vitro Glass Corporation
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How Machine Learning can help

= Vision tools for quality control

= Predictive Maintenance

= Supply chain / Inventory optimization
= Process prediction and optimization

= Generative design

= Robotics
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Scientific Simulation + ML (SciML) Workflow
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Example: Glass manufacturing

Streamlines in glass furnace. Inset: Autoencoder network

input layer

Photo: LLNL team at PPG Glass production facility
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Issue: Molten Glass tank

Raw
Materials

Gas Burners
In S /7 To Forming —»

Batch

Melting
<— Glass Convection

Glass Convection —»

Refractory Blocks

T 2000 F
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Solution: Fast-running Emulator

Port1l |:| 10200 Port 5 D 16090 Bubbler 1 D 0.093

Port 2 D 13000 Port 6 D 17010 Bubbler 2 D 0.045

Port 3 |:| 13025 Port7 B 10015 Cooler 1 |:| 10. . . .

Port 4 [ 13500 Ports || 10015 reser }

TotHeat = 100,000 MainHeat = 45,000
Producti Ind 1 10.381 Temperature 1 = 2790
roduction Lndex = r Temperature 2 = 3541
Production Index 2 = 0.996 Temperature 3 = 3360 Flow A = 35.4
Production Index 3 = 14.38 T P £ 2 : 2856 Flow B = 42.9
Production Index 4 = 10,304 emperature 4 = Flow C = 19.8
Production Index 5 = 2.445 Temperature 5 = 23967 Flow D = 33.4
Production Index 6 = 1.4155 Temperature 6 = 3176 Flow E = 46.9
Production Index 7 = 12.14 Temperature 7 = 3210

. . (““l
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Solution: Fast-running Emulator

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help

GasPort 1 I y 20980 Gafort § l 24700 Additive Rate I Q006742 Cbseww
GasPort 2 | ; 25520 GaPort 6 | 1990 Gote 1 Height | 14
GaPort 3 I y 26780 GaPort 7 . 6500 Gate 2Depth l 1241
reset
GasPort 4 I 28210
TotHeat = 11516 CentHeat = 13.2976 &
Exit temp min °F = 2,083.16 Sensor A0 :F = 2,319.32 Sensor BO :F = 2,848.98 Output has been
PostProc Index 1 = 14,379,467 Exit temp avg °F = 2,153.61 zensor 3 °§ - g:gs;g :ensor E; °11: - 2.2?2_‘;1 1 i ” f d
PostProc Index 2 = 3,322,020,866 Exit temp max °F = 2,099.22 SEnSOE = 4 g i =3y .
PostProc Index 3 = 906.662 Tank Max temp °F = 3,014.42 Sensor A3 °F = 2,323.33 Sensor B3 °F = 3,058.09 Intentlona y o uscate
PostProc Index 4 = 29.1739 ° z Sensor B4 °F = 2,298.43 Sensor B4 °F = 3,016.06
Hot Spot 1 °F = 2,859.02 z ;¢
PostProc Index 5 = 20,418,738 Hot ‘Soot 2 °F = 2 681.92 Sensor A5 °F = 2,317.28 Sensor B5 °F = 2,950.04
PostProc Index 6 = -6.57826 2E b0 s VS Sensor A6 °F = 2,416.77 Sensor B6 °F = 2,880.68
PostProc Index 7 = 0.232648 Midflow Temp °F = 2,161.63 . A7 °F = 2,316.53  Sensor BT °F = 2,838.88
PostProc Index 8 = 18.654 Loc 1 Temp °F = 2,204.65 ° : ° REPGR
: Sensor A8 °F = 2,228.25 Sensor B8 “F = 2,247.8
PostP I 9 = 73.5618 ° = % 4
eniEronsIndos ~ e A R Sensor A9 °F = 2,127.76 Sensor B9 °F = 2,089.21
Loc 3 Temp °F = 2,154.75 Sensor Al10 °F = 2,092.41 Sensor B10 °F = 2,095.5
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Simulation to Production data
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Example: Aluminum Casting

= Computer simulation — using commercial off-the-shelf tools to analyze potential for cracking

= Pilot-scale production experiments

==t 477.701

I 413234
- 348,760

2843
21983
155,359
90,9024
26496
'L
Aluminum casting simulation LLNL and ORNL team at Arconic R&D Center
Lawrence Livermore National Laboratory N A‘ Zﬁ 12
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Aluminum Casting:
COTS simulations developed (ProCAST)

Hot Tearing Indicator arf050st_nrg Step Ho / Time Step : 1056 / 2.103e-01
Simulated Time : 134.3510 sec
Percent Filled : Hil
Fraction Solid HFT |

ProCAST

Lawrence Livermore National Laboratory N A'.s&% 13
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Aluminum Casting:
Fast-running Surrogate Model

= No Cracking = Cracking

2500
2000
1500 F
10
1000
500
0
0 0.05 0.10 0.15 0.20 0.25 0.30
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Innovating Startups:
VAST Power Systems

VAST Power Systems' Gas Turb|nes = OptImIZIng tOp 10 of >100 DESign Parameters
of VAST’s proprietary combustor, with a

chemistry set reduced from ~8,000

» Backup Power Vital for Wind and Solar . )
combustion reactions

» Boost Power ~60% and Efficiency ~24% _
= Design Parameters
> NO, Below Limits without Catalysts « Argonne NL HPC Modeled VAST Emissions

> 1,000,000 Core Hours of Computational
Fluid Dynamics (CFD)

« Lawrence Livermore NL optimizing
conditions using Reduced-order models

N <l P

—>__ i =
vy { e = DOE Phase Il - Low NOx VAST Turbine Design.
Water Flow f i | A Expect Best in Class with Hydrogen, Ammonia

- - (e
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Innovating Startups:
Machina Labs

Al & Robotics for on-demand = Develop fast-running models for deformation of
Manufacturing various materials.

o Rapid deployment and scale-up = Develop reduced-order ML models for integration

e Learning from data-driven models. Building towards into autonomous path planning

autonomy for various geometries and alloys _ ,
= ML models will allow for better adaptive control

e Enabling agile manufacturing of unique parts

Lawrence Livermore National Laboratory N A'SE@“; 16
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Sheet metal pro

duction (AK St
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Technological Trajectory of Smart Advanced
Manufacturing at LLNL
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Scientific Machine Learning

Scientific Machine Learning (SciML)

= Using physical simulation for data

(training)
= ML for fast surrogate model (inference)

= Simulations can be expensive

— Intelligent sampling

— Speculative sampling

L e e s
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Concept — Design of Experiment

Design of Experiment

"N
= Used to cover design space efficiently - : - - : =
= Sampling can be rotated to leverage existing - mEm -

simulations N u u N
B BER m
= Care must be taken to avoid unsuitable control o
configurations. alm - m aam
SN
= =
n = = n
= =

"N

2D mapping of 6 control variables:
Box-Behnken sampling

. . ( (.-l
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Concept —Active Learning

Current Surrogate model

.\How well model A matches simulation (color)

@, Merlin
Interim test / & 4"

period

Agent ID and current Region (color)

I
*
\)atabase update

New Model
Published

=04

- 1

=0f)

o

... Generation of Model B Generation of Model C ...

Lawrence Livermore National Laboratory

NYSE »
LLNL-PRES-825564

National Nuclear Security Administration




Concept — Transfer Learning

Transfer Learning

= Elevates surrogate with production data

= Combines sensor data with physics
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SciML Workflow
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25

Typical Quality Map (X ->Z ->Y)

Bad

OK

Good
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Key Points

* Neural Networks can learn and predict features of complex processes
e Simulations can provide training data

* Physical experiments and/or production data can be integrated into
predictor model

e \WWe have tools and resources

0 . ( ’._l
@ Lawrence Livermore National Laboratory N A'Sé‘_’g\ 26
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Impact: savings

 Reduced-order model saves days, weeks, or months when
process is out of control limits.

e Data integration makes most of sensor data and simulation
iInvestment.

* Uncertainty quantification helps to avoid costly investments that
don’t inform.

@ Lawrence Livermore National Laboratory N Sﬁf_&;‘ 27

LLLLLLLL S-825564



Project Impact. company/industry
- .. B _
mltl‘o
D

GLASS

e Save ~2.5 TBTUs of energy

U.S. Glass Industry * Avoid 130,000 metric tons of CO, emissions

S60M per year: if this technology can reduce “

Aenley{Alees R the amount of reworked scrap by 50% Alcoa

ARCONIC

Innovation, engineered.

U.S. Primary Casting S365M per year

POWER SYSTEMS, INC
Clean Power + Good Stewardship

VAST Power Systems save ~1% of U.S. turbine fuel use

AK Steel / Cleveland Cliffs >S1M per mill per year A( AKS‘I‘eeI A

ArcelorMittal / Cleveland $90M . ArcelorMittal
Cliffs (steel casting) peryear —~ C L I F F S

® Machina Labs

U.S. Steel industry 3 PJ energy -> $30.5M per year

Lawrence Livermore National Laboratory N A‘S&% 28
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LLNL Metal Additive Manufacturing Data Curation,
Distribution, and Documentation — Ethan Ahlquist, CED

DSSI Student Project: Curate, Publish, and Market metal additive
manufacturing data from ACAMM LDRD Strategic Initiative.

AM Rocket Motor

Contents lists available at ScienceDirect

Journal of Materials Processing Technology

ELSEVIER journal homepage: www.elsevier.com/locate/jmatprotec

Observation of keyhole-mode laser melting in laser powder-bed @mm
fusion additive manufacturing

Wayne E. King®*, Holly D. Barth®, Victor M. Castillo®, Gilbert F. Gallegos®,
John W. Gibbs#<, Douglas E. Hahn?, Chandrika Kamath ¢, Alexander M. Rubenchik®

3 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermare, CA 94550, USA
® Engineering Directorate, Lawrence Livermore National Laborarory, Livermare, CA 94550, USA

< Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA

d Computations Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

¢ NIF and Photon Science Directorate, Lawrence Livermore National Laboratery, Livermore, CA 94550, USA

ARTICLE 1D7° = === = ==

1 of metals employs high-power focused laser beams.
ed by conduction of heat in the underlying solid mate-
T of melting can change from conduction to so-called
epthof the molten pool is controlled by evaporation of

Jato DOE 08 Piate DOE 11 [Piate DOE 11 I

Single Track image Transform ~ [Plate DOE 08 | [

i i 3 Siice A Track 5 Shice A Track 1
i . [Siico A Track 3 |

Image Analysis
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How to work with us:
https://hpcd4energyinnovation.linl.gov/

. Vic Castillo, Ph.D.
Lmkedm® https://www.linkedin.com/in/viccastillo/

Lawrence Livermore National Laboratory INVYSE
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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.



