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With NCSA: Six Months Ahead of Competition
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Industry Partners — 1 of 3
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Industry Partners — 2 of 3
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Industry Partners — 3 of 3
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Legacy Partners
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History

1986 — Program founded with first industry partner, Eastman Kodak
1992 — First Grand Challenge Award: Eli Lilly

1993 — Caterpillar joins, wins Grand Challenge Award

2004 — Boeing recognized with Grand Challenge Award

2014 and 2017 — Winner of HPCwireTop Supercomputing Achievement

2017 — ExxonMobil sets sector world record
* Qil reservoir model: 3 months to 10 minutes, 719000 cores, $1B+ ROI

2020 — Majority of Industrial engagement becomes Al-oriented

NDUSTRY:
> ess Through the Years

NCSA |
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Engagement Model: Current Partners

Discover Build Deliver

Implement

Interview
stakeholders

Evaluate
Loop as effectiveness

necessary Calculate ROI

X ILLINOIS NCSA

Design solutions
Develop

Test




Engagement Model: Prospective Partners

* |dentify challenges for companies that match team skills

abbvie ‘ S

* Be consultative: listen to needs and challenges

« Match needs with specific skills within team or with strategic
partners

 Define value proposition: what company gets from engagement

X ILLINOIS NCSA
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Modeling and Simulation

Bioinformatics and Genomics

“Big” Data Analytics, GIS, and Al

Code Profiling and Optimization

Cyberinfrastructure and Security

Visualization

Much more at NCSA and the University of Illinois
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National Petascale Computing Facility

World-Class Hosting Benefits
Data Center to Industry

e Dept. of Energy- e Low-cost power &
like security cooling

. 88000 sqft . 24/7/365 Help

« 25 MW of power; Desk
LEED Gold e Adjacent to and

e 400+ Gb/sec aligned with UIUC
bandwidth Research Park
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*Forge — The HPC Environment for Industry

* Latest and best
— Computing (Intel/Skylake 192-256 GB)
— GPU driven Al technologies (V100)

* 99% uptime and live upgrades

 Development and production workhorse

* Rapid user support and advanced consulting

* Built exclusively for Industry’s applications
and workflows
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Engineering Application Breakthroughs on Blue Waters 2013-2020

64,000+ cores
LS-DYNA (Cray,
RRC, P&G, NCSA)

HTC, 600TB 100,000+ cores
H3Africa (IGB, Alya Multiphysics

HPCBio, U of C. ~90% PE @ 100K
Town, NCSA) ‘ I(BSC & NCSA)
716,800+ cores ‘v'
( 114,000+ cores
/] Ansys-Fluent

Oil & Gas
Reservoir
Modeling (Exxon (Cray, Dell, NCSA)
& NCSA)
512 XK7 nodes 65,000+ cores
ACCEL_WSMP WSMP (IBM-
(NVIDIA, IBM- Watson, NCSA,
Watson, NCSA) BSC, RRC, Repsol)
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Two Real-World Cases Solved with Alya Multiphysics
Code from BSC on NCSA’s Blue Waters

Human Heart
Non-linear solid mechanics
Coupled with electrical propagation
3.4 billion elements, scaled to 100,000 cores

Kiln Furnace
Transient incompressible turbulent flow
Coupled with energy and combustion

4.22 billion elements
Scaled to 100,000 cores @90% parallel efficiency
17.4 years on a serial PC down to 1.8 hours on BW
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Reducing the Time-to-Solution for High Fidelity Finite Element Analysis of
Gas Turbine Engines - from Months to Hours, 2015-2018

,/f>
p

&

Rolls-Royce engine model for
thermo-mechanical analysis, >200M
DOFs

1L ILLINOIS NCSA

Iteration loop

Model
(RR)

LS-DYNA
(LSTC)

RR will provide models ~200M
DOF w/ contacts & NLGEOM

LSTC makes proprietary
improvements to the implicit solver

Scalability Studies
(Blue Waters)

LSTC/NCSA/Cray/RR will analyze
changes and to verify
improvements to implicit solver

Final Verification
(RR)

Validate improvementson RR
whole engine thermo-mechanical
models
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Massively Parallel Modeling in Oil & Gas & ROI

Ex¢onMobil

1L ILLINOIS NCSA

Reservoir simulation models the complex
subsurface flows of fluids in oil and natural gas
reservoirs

Previous runtime: 3.5 months on prem
Optimized: 10 minutes on Blue Waters
716800 MPI processes, was the entire
engineering sector world record for degree of
parallelism

Minimized costs and environmental impact
ROI: USDS1+B



Large Scale Statistical HPC Analysis in Agriculture

Simulation Run using Different Number

of Nodes on iForge
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Power statistical analysis uses massive data collected from
farm field trials to allow an agriculture partner of NCSA to
assess quality of their experimental designs

NCSA has developed an efficient and scalable
implementation in R to perform massive simulation using
multi-node parallelization and variable instantiation
techniques

Our new implementation decreases the size of the
program from over 50,000 lines to less than 100 lines,
reduces the processing time for a simulation with over
70,000 cases from 175 days (@partner) to less than 3.5
hours) (@HPC/iForge)

Courtesy of Dr. Dora Cai and an Industrial Partner of NCSA




e Benchmarked a new genomic variant calling
software which runs on GPU only

e Tested multiple tools within the suite,
determined the speed up of this software with
respect to the industry standard GATK

fq2bam Conversion
e Evaluated the biological accuracy by comparing @ GPU variantcaller @ GATK
results to GATK, the gold standard of variant 8000

calling.
ven . 6000
e Tested the scalability of this software with

different sizes of genomic data to determine its
robustness.

4000

e Worked with our industry partners to test 2000

against their variant calling tools.

Mean Run Time (Minutes)

0 - -— O
50x 75x 100x

Sequence Coverage
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Four Paradigms in Science and Engineering

4'"" paradigm:
(Big) data

Thermodynamics Molecular Dynamics

Experiments

I

|

| I

| I

i . I

: 3"9paradigm: |} driven science

I Computational |

1 2" paradigm: science :

I o .

Model-based (simulations) ! . .« e

1% paradigm: [l theoretical | “Al is the new electricity”
Empirical '™ science | Prof. Andrew Ng, Stanford,
science | : Coursera founder

1 AU - Q v W : Predictive analytics

I| change W ork I Clustering

: 2] i 520 il Relationship mining

: Density Functional : Anomaly detection

[ Laws of Theory, :

| |

! .

'
1600 1950 2000

APL Materials 4, 053208 (2016)
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Big Data and HPC Driven Deep Learning

Accuracy

Amount of Data

1L ILLINOIS NCSA
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Small NN

Traditional
Learning Algos

Accuracy Comparison
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Choosing and Applying Best Machine Learning Algorithm

Vector Autoregression

80 (Dm ECASTING
PRODUCT LAUNCH E = ““HHFI N
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PREDICTING (5 N %8 NEW PRODUCT
. NEW PRODUCT = Z 283 MARKETS
DIFFUSION O () PREDICTING PRICE VOLATILITY

FORECASTING MULTIPLE TIME HORIZONS (DAILY, WEEKLY, MONTHLY)

FORECASTING PRICE O TEXT MINING MEGA TRENDS

ARIMA DATA MINING CUSTOMER Z FORECASTING PREDICTING CROSS SELLING

Bayesiaff Network®
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Choosing Best Machine Learning Algorithm

» Based on Root Mean Square Errors (RMSE) » Based on Median Values and Standard Deviation
Model RMSE Algorithm Accuracy Comparison
Name
VARSXGB s
ARIMAHKGR g
ANN Model 1 s _
AN ocel 2 Q %0 Fig »
ARIVA © = . - : =g iy
> s - | I |
VAR : 1
Trivial Dense Model 80
Company's Current Model
0 0 w0 1 a0 & W % M0 4 5 50 -
RMSE($MM) > LR GAM E.Net SVYM { GEM DL
Kum of RUSE (S foreach Nare. .
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Reduce Production Cost using Machine Learning

Prediction Values vs. Lab Results
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Production Run

 Optimize ingredient recipes using Machine Learning predictive models

 Make the predicted values closer to the real lab test results (ground truth)
 Reduce Mean Absolute Errors (MAE) from 0.73 to 0.43

e ROI: USD$18 million annually by reducing the production cost

1L ILLINOIS NCSA




Connecting Industrial Geospatial and A1 Communities

Novel Spatial Data Generators to connect

' - Worl
TensorFlow models with geospatial data :

AAAAA

- Handles geospatial data in consumable
formats by Al models without worrying about
their specs such as projection, resolution,
etc.

AAAAA

- Harmonizes multiple data sources and feeds
them directly to the same Al model during
the training phase.

- Scales processing of archives of geospatial
data during the prediction phase.

0N

Geospatial Data Deep Learning Models

1L ILLINOIS NCSA




Surrogate Data-Driven Deep Learning Model

Validation
Database

-l HPC and Advanced
« l Computing Environment
had

B sTAR-cCCM+ : / Train
PYTHORCH OPEHVFOAM model on Accurate Results Inferenced
Instantly and without HPC and
Modeling Software

L~ = w GPUs

<l
N

L1 L.
N

)

\ 4 \ 4
£
Training s
Database GPU =
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Deep Learning for Topological Optimization of Metamaterials

Ground-truth Prediction
Topology optimization problem with random (a)
optimization parameters (V, Imin, and ID)
Vy = 0.717
bkl | ‘1 Tmin = 5.178um
] ""' !
1 [} 1]
\ I I Topology b)
l " " optimization
-
-l — - Optimized Vy =0.428
topology Tmin = 8.202 um
(ki) 11 o 22) (12) Data restructurin,
Eﬁ;&; . I"ﬁ = Lo E‘ﬁ)-,:l =0 & ).I =0 I Neural network : Ground-truth l
4‘:.lelz'l'll = 0 L.Sb._._l = I_DI“., Ejz.z'l 2 — U l B 1
;51“ 0 €U522 ) 0 2012) 1 0% input channels (target) image: (c)
g9 — 2422) — 15 = 1.0%
Ve .
/ i P ) V; = 0.795
P v . : ° p Fonin = 3.476um
Tmin "’<. A I X X~.

Kollmann et al., Materials & Design Rt
(2020), 109098

Deep Learning for Multiphysics Modeling of Visco-plastic Materials

°
°
°©

E 0151
T E
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@ [ i H £
e (e () X5l s 0.05
p 2 H
! Dilated Causal Cony & |
ime (s

Solidifying Steel Do ) (7 R | oup ¥ P ® ™ -
3 ReLU d = 4 ~ Temperature at node 1: n
! - W\ Temperature at node 1:
[ Dropout A —— Temperature at node 21:
i) ecnnce) ([ B BN BN by Temperature at node 21:
—_— Dilated Causal Cony XX | — Temperature at node 41:
[ ) ) d=2 —=- Temperature at node 41:
1 | e | —— Temperature at node 61:
ReLU * Temperature at node 61:
_NYNN N N NN NN BT
Dropout
o d=1

Stress at element 1: Ground-truth

Stress at element 1: Prediction

l’ ; | —— Stress at element 10: Ground-truth
Stress at element 10: Prediction

~—— Stress at element 20: Ground-truth

—~=- Stress at element 20: Prediction

~—— Stress at element 30: Ground-truth
Stress at element 30: Prediction

ISt 4

Abueidda et al., International Journal of ticity (2021) 136, 102852 o .

1L ILLINOIS NCSA




Physics Informed Neural Network (PINN)
Tuning K-e& Turbulence Model

Feedforward neural network Fluid physics constraints

operator

u; 0 (vT 68)
9x; 0x; \o, 0x;

1 G DNS pred \2 1 & DNS pred \2 1 & pred \2 1 N pred \2
LOSSZ_Z(Ki —-K™) +_Z(gi —&) +a)f*_z(fi ) +wg*_z(gi )
N i=1 Ncp i=1 N()p i=1 NCp i=1

P

hidden nodes

Luo et al., International Supercomputing Five Parameters Cq, C¢y, C,\, 0k, 0. tuned by TF as 5 extra

Conference (ISC) 2020 Hyperparameters to additionally minimize Loss
1T ILLINOIS NCSA



Comparison of the time-averaged Turbulent Kinetic Energy

0.04(
!0035

2
DNS Solver ..

Five Empirical NN-pred

constant (Default) Fix C, (Ground TrUth)o -0.03(
Ceq 1.44 1.302 5 -0.02¢

K- Solver )
Cy 0.09 0.09 0 -0.01¢
Oy 1.0 0.751
2 -0.01(

O¢ 1.3 0.273 K-€ Solver

Tuned by PINNO |

'OOOE
0.00(

DNS Simulation ~ Weeks and Months
Luo et al., International Supercomputing . . ~RA
Conference (ISC) 2020 K-£ Simulation ~ Minutes and Hours
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Meshless Physics Informed Deep Learning Method
For 3-D Solid Mechanics

e Strong Form (Governing PDE) is NN’s Loss, enforced
on collocation points in the domain and on essential
Deep Neural Network (DNN) and natural Boundary Conditions
|

e No data generation is needed, such as in surrogate
deep learning models

e Relies on simple linear algebra kernels, which are
better optimized on GPU-s then sparse direct solvers
in implicit Finite Element Method (FEM) and use
significantly less memory

e Easier Discretization of complex geometries without
issues with the aspect ratio of elements, connectivity,
and assembling into a global stiffness matrix

P |

W

e Globally smoother solution without discontinuity in
displacement solution between lower order elements

Abueidda et al., International Journal for Numerical Methods iy
N

in Engineering, In Revision, 2021
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Meshless Physics Informed Deep Learning Method
For 3-D Solid Mechanics

= . (a) . =
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Abueidda et al., International Journal for Numerical Methods in Engineering, In Revision, 2021

1T ILLINOIS NCSA




The Ultimate Singularity in AI?

Al Reality Checks:

 No, machines can’t read better than humans (2018)
— https://www.theverge.com/2018/1/17/16900292/ai-reading-comprehension-machines-humans

* How IBM Watson Overpromised and Under-delivered on Al Health Care, IEEE
Spectrum By Eliza Strickland, April 2019

 DeepMind’s Latest A.l. Health Breakthrough Has Some Problems, by Julia Powles,
August 2019

Al machines can “learn” but not yet “think” (at least not like humans), and it remains
to be seen if, how, and when the major Al singularity point of true intelligence will
be reached?

1L ILLINOIS NCSA


https://www.theverge.com/2018/1/17/16900292/ai-reading-comprehension-machines-humans

But be careful what you wish for!

THAT WAS SURPRISINGLY
EASY. HOW COME THE
ROBOTIC UPRISING USED
SPEARS AND ROCKS
INSTEAD OF MISSILES
AND LASERS?

IF YOU LOOK TO
HISTORICAL DATA,
THE VAST MAJORITY
OF BATTLE-WINNERS
UsED PRE-MODERN
WEAPONRY,

Thanks to machine-learning algorithms,
the robot apocalypse was short-lived.
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Thank you!

Brendan McGinty — bmcginty@lllinois.edu

Dr. Seid Korié¢ — koric@lllinois.edu

NCSA.lllinois.edu/Industry

I NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS
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