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Goal: Increase Strength of TATB

= The material we are interested in is
a powder called TATB.

= |t must be combined with a binder
into a solid pellet.

= Both the binder and TATB
participate in forming the strength
of the pellet.

= There are many ways to
manufacture TATB as well as many
choices of binder.

= What combination exhibits the
most strength?
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Tensile Strength Testing
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Critical Peak Stress (aka Ultimate

) i l Applied Tension Strength): _The point at which a
material will not resume its original
i Evcsediing shape when stretched.
-‘—" % Tensile Strength  »  This is an expensive test for this
Tensile Strength material.
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Initial Problem: Predict critical peak stress (CPS)
of TATB by looking at SEM images

= By looking at a scanning electron microscope image of TATB crystals, can we predict
what the stress-strain tested CPS (aka Ultimate Strength) will be when we have
pressed it into a solid cylinder?

= From our paper: Predicting compressive strength of consolidated molecular solids

using computer vision and deep learning, Materials and Design 2020
— https://www.sciencedirect.com/science/article/pii/S0264127520300745
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Results with our deep learning approach

m Ground Truth Deep Learned Predictions of CPS from Model by TATB Lot
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What is the network keying off of to make its

predictions?

= |s the network making some sort of rational
judgement about the material or is it possibly just
lucky?

— Can we expect it to continue to generalize and to what
extent can we expect this method to work on other
materials?

— Do important visual features for the network correspond
to useful physical properties?

— Is the network using some feature we might not have
thought of and can that give us new insight into material
strength?

= Need an interpretable explainable Al (XAl) solution.
— Most XAl methods are just saliency maps. Can we extract

something easier to interpret than where did the network
look?

XAl Saliency Maps
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Idea: Correlate describable textures to network
decisions.

TATB SEM Image with Extract Features at A Texture Image with
Saliency Map Overlapped s most salient locations Saliency Map Overlapped
» , from same model

trained on SEM data.

T

Which texture features
are the most like
different SEM
features?

Example: What kind of
texture might correlate
with a low CPS?

= We know where the network looks, but not what it finds interesting.
— Features on SEM crystals are rather abstract to human observers.

= Can we correlate salient feature vectors from a SEM trained network between texture images and

SEM images to tell us what the network is looking at?
— This requires we use the same SEM trained network on both SEM and texture images to extract features.
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Describable textures dataset

= Developed by VGG at Oxford, released
in 2014

= 5640 images in 47 texture categories

= Example textures:
— Bubbly
— Honeycombed
— Porous
— Striped

= https://www.robots.ox.ac.uk/~vgg/data
dtd
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What is the image like to the network where it

is most salient?
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Formation of SMOE Scale map which
will be element-wise multiplied by a
GradCAM map.

= Use FastCAM to get most salient

location.

— https://github.com/LLNL/fastcam/

— Efficient Saliency Maps for
Explainable Al:
https://arxiv.org/abs/1911.11293

— Produces a saliency map of the
parts of the image most important
to the network’s decision.

— Combines SMOE Scale a measures
of layer activation variance
activation with GradCAM.

— Much faster than most other
methods and more accurate.
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Quantitative Results on FastCAM using
ROAR/KAR

Original 10% Kept 50% Kept 50% Removed 90% Removed

= |f you mask out the most s
salient regions, » >
performance should drop pF  ' o

L.

How faithful are the

more for a better Jowtaithivlare he eoribiedacare

How faithful are the Higher is Better

mEthOd When you traln most salient Iocations?_\
O n t h e m a S ke d i m a ge S . Method KAR ROAR COMBINED Speed Resolution

Integrated Grad Sundararajan 2017 3.62 -3.58 0.03 Slow Fine
Gradient Simonyan 2014 3.57 -354  0.04 Medium  Fine
Existi ng Guided Backprop Springenberg 2015 3.60 -3.57 0.04 Medium  Fine
Method Full Grad Srinivas 2019 3.66 -2.32 1.34 Medium  Fine
H ethods Grad-CAM++ Chattopadhyay 2018 3.64  -227 137 Fast Coarse
= Conversely, if you mask Ay
Grad-CAM Selvaraju 2017 3.67 227 1.40 Fast Coarse
1 SMOE Scale + Layer Weights [1,1,1,1,1] 3.62  -2.46 1.15 Fast Fine
O u t t h e I e a St S a I I e n t SMOE Scale SMOE Scale + Layer Weights [1,2,3,4,5] 3.62 -234 1.28 Fast Fine
Alone SMOE Scale + Prior Layer Weights 361 231 1.30 Fast Fine

1 m Integrated Grad -w- SmoothGrad Sq. Smilkov 2017 356  -2.68 0.88 Slowest  Fine
reg I O n SI p e rfo r a n C e Guided Backprop -w- SmoothGrad Sq. Smilkov 2017  3.49 - 1.16 Slow Fine
Gradient -w- SmoothGrad Sq. Smilkov 2017 352 (2.12) 141 Slow  Fine

8

. SMOE Scale + Prior Wts. -w- Full Grad 3.68 -2 1.40 Medium Fine
S h ou I d d ro p | ess ' w h en Combined  sMoE Scale + Prior Wis. -w- Grad-CAM++ 366 222 144 Fast  Fine
Meth OdS SMOE Scale + Prior Wts. -w- XGrad-CAM 3.68 -2.23 Fast Fine
. SMOE Scale + Prior Wts. -w- Grad-CAM 3.67 -2.23 1.44 Fast Fine
yo u ret ra I n Same as above Gamma CDF Normalizer 68  -2.23 Fast Fine
. Same as above Layer Weights [1,1,1,1,1] @ -2.24 Fast Fine
C Same as above All Bottleneck Layers 68  -2.23 Fast Fine
Method used in our lllustrations. Our solution is approx. 1500 times faster!
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Batches look more like other batches with
similar CPS.

Without looking at texture yet: . Low CPs | Lots sorted
we can see that salient ! by CPS from
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Feature Correlation with Material Strength
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Correlation between textures and CPS
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What textures tell us the network is looking for

High CPS
Sample

Flecked

(Fine pores or spots)

Grid

(Smaller uniform size)

Stratification
(Rock layering)

Low CPS
Sample

Braided

(Intersecting
stratification)

Bumpy
(Larger textured
objects)

~— Texture

Seemed
straight
forward.

= Size and Distribution

Took more
work to
— Texture figure these

two out.

~— Size and Distribution
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Conclusion

= A priori particle size (grid/bumpy) and porosity
(dotted/Flecked) we suspected of playing a roll in CPS.
However, stratification/braiding was something new

we uncovered.
— Note that we cannot eliminate confirmation bias as a factor.

= Did not see signs of some a priori suspected features
playing a roll. These include facet, dispersity and

surface area.
—It’s harder to exclude suspected visual features by this
method.
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Thank you
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