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Background and motivation

Laser Powder Bed Fusion (LPBF) additive manufacturing is very promising
but there are shortcomings. Parts often exhibit:

Irregular quality

Dimensional inaccuracies

Defects: cracks, pores, spatter, etc.

We need approaches to control and optimize the additive manufacturing
process
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Background and motivation

Process parameters (e.g. laser power and velocity) optimization is a
challenging task

Need to incorporate effects of material, geometry, and complex
underlying physics of LPBF

Meltpool sensor data is available but often limited or noisy

High-fidelity physics-based simulations are computationally expensive
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Technical approach

Combine optical sensor data and machine learning for the feed-forward
selection of laser process parameters

1 Data generation: Print parts with varying geometry and laser
parameters and collect sensor data.

2 Modelling: Build models to predict the sensor signal or laser
parameters

3 Deployment: Print parts with laser parameters determined by the
model.
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Training data

Training parts are printed to collect photodiode signal data

Focus on canonical features:
thin walls and overhangs

Stainless steel (SS316L) used
for all parts

Laser power and velocity are
varied across a wide range

Each part is printed 13 times to
acquire sufficient data
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Forward model

Build a model to predict the photodiode signal PD = f (geo, laser)

PD: photodiode signal

geoi : distance to nearest edge in
x − y plane

geoi : distance to nearest
overhang in x − y plane

geoi : distance to nearest
column in x − y plane

geoi : distance to nearest
overhang in build (z) direction

geoi : length of the track

laseri : laser power

laseri : laser velocity
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Forward model

1D CNN to predict track-wise signal

Inputs: trackwise geometry and laser parameters

Output: trackwise PD signal

Fully convolutional model with ∼ 30K parameters

550K tracks used for training
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Forward model results

MAE on held-out validation data: 1060. Predicted tracks:
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Inverse model

Build a model to predict the laser parameters given the geometry and the
desired PD signal. laser = f (geo,PD)

Inputs: trackwise geometry and PD signal

Output: laser power and speed (single value per track)

CNN regressor with ∼ 33K parameters

Same 550K tracks dataset used for training
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Inverse model results

MAE on laser power: 10 W
MAE on laser speed: 20 mm/s
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Deploy inverse model on test geometry #1

Test inverse model on simple “window block” geometry

Create ML model inputs from geometry

Predict track-wise laser power/speed for a desired constant PD signal

Reduced power in corners, thin walls, and overhang regions
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Deploy inverse model on test geometry #1

Test inverse model on simple “window block” geometry

Create ML model inputs from geometry

Predict track-wise laser power/speed for a desired constant PD signal

Reduced power in corners, thin walls, and overhang regions
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Deploy inverse model on test geometry #1

Comparison of photodiode signal with optimized (left) and nominal
parameters (right)

Optimized laser parameters predicted by the inverse model lead to lower
photodiode signal in overhang and reduce fluctuations.
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Deploy inverse model on test geometry #1

Compare prints with optimized (top) and nominal parameters (bottom)

Optimized parameters improve
part quality:

Considerable reduction of
dross formation in the
overhang regions

Thinnest wall is less distorted

No distortion compensation
strategy was applied
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Deploy inverse model on test geometry #1

Dim. Desired Nom. ML

H1t 4 3.529 3.799
H2t 4 3.521 3.804
H3t 4 3.623 3.841
H4t 4 3.610 3.828
H5t 4 3.462 3.803
H6t 4 3.362 3.807

Avg. dev. -0.482 -0.186
H1b 6 5.513 5.803
H2b 6 5.494 5.821
H3b 6 5.529 5.824
H4b 6 5.586 5.752
H5b 6 5.467 5.712
H6b 6 5.460 5.727

Avg. dev. -0.492 -0.227
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Deploy inverse model on test geometry #1

Dim. Nom. ML

D1t 89.565 89.780
D2t 90.396 90.527
D3t 91.591 88.953
D4t 91.005 91.413
D5t 92.352 91.372

D1b 90.025 90.017
D2b 90.718 90.174
D3b 92.726 90.508
D4b 93.694 90.526
D5b 95.236 91.495

Avg. dev. 1.731 0.477
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Deploy inverse model on test geometry #2

Deploy model on a second, more complex, test geometry
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Deploy inverse model on test geometry #2

Compare prints with optimized (left) and nominal parameters (right)

Optimized parameters improve part quality:

Considerable reduction of dross formation in both flat and angled
overhang regions

Reduction in keyhole porosity in the thin walls
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Deploy inverse model on test geometry #2

Computed tomography (CT) data used to assess dimensional accuracy
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D2 Dim. Desired Nom. ML

D1 3 2.708 2.828
D2 2 1.681 1.753
D3 1 N/A 1.086
H1 15.2 14.679 15.177
H2 15.2 14.768 15.108

Dimensions of the part printed with optimized parameters are closer to the
desired values for the five features considered.
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Conclusion

Data-driven approach for the selection of laser process parameters

Parts printed with varying laser parameters to collect photodiode data

Built models to predict the track-wise photodiode signal or laser
parameters

Used the inverse model to optimize laser parameters for a desired
constant photodiode signal

Optimized parameters lead to improved part quality

Future work:

Add geometry features to the training data: angled overhangs,
circular features, angled thin walls, etc.
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Questions?

The work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
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